

A. Radkevich

CERES underestimates surface albedo over the Antarctic

CRS ed, N_{FOV} , SZA	a _{CERES} (STD)	a _{MODIS} (STD)	$a_{\text{MODIS}} = c a_{\text{CERES}}$
CRS ed 2, All SZAs, $N_{FOV} = 45496$	0.758 (0.039)	0.814 (0.042)	1.0727
CRS ed 2, SZA < 70, $N_{FOV} = 26879$	0.751 (0.025)	0.806 (0.039)	1.0724
CRS ed 4, All SZAs, $N_{FOV} = 18036$	0.745 (0.026)	0.800 (0.038)	1.0719

Is MODIS a benchmark? Maybe not, but...

Grenfel *et al* (JGR 1994) reported ground measurements of clear sky albedo: a = 0.80, 0.84, 0.85. for SZA = 55°, 68°, 72°, respectively.

Possible reasons for the surface albedo underestimation is underestimation of TOA albedo over permanent snow/ice.

Solution: precise RT modeling involving accurate bottom boundary condition

RT model:

- •32 bands covering CERES SW band;
- •monochromatic calculations performed by DISORT;
- •accounts for Rayleigh scattering;
- •gas absorption (correlated-k, HITRAN);
- •clouds and aerosol scattering and absorption (if any);
- •surface elevation.

BRDF:

$$\rho(\theta_0, \theta_v, \varphi) = \frac{I_r(\theta_0, \theta_v, \varphi)}{F_0(\theta_0)} = \alpha(\theta_0) R(\theta_0, \theta_v, \varphi) / \pi$$

Where $\alpha(\theta_0)$ – black sky albedo, cannot be measured due to Rayleigh scattering, has to be modeled; $R(\theta_0, \theta_v, \phi)$ – anisotropic reflection factor, measurable(?), an attempt to clean out directional distribution of the incident light in measurements under clear sky.

$$R(\theta_0, \theta_v, \varphi) = \frac{\pi I_r(\theta_0, \theta_v, \varphi)}{\int_0^{2\pi} d\varphi \int_0^{\pi/2} d\theta_v \sin \theta_v \cos \theta_v I_r(\theta_0, \theta_v, \varphi)}$$

Measurements of R and their analytical model

Reflected radiance and flux were measured at Dome C in austral summers of 2003 – 2004 and 2004 – 2005 (Hudson et al 2006 JGR). Measurements are done at θ_{ν} = 7.5°, 22.5°, ..., 82.5° and ϕ = 150°, 165°, ..., 345°, 0°, 15°, 30° and wavelength 0.35 to 2.4 μ m with a step of 0.025 μ m.

Matrix of all measurements can be represented as

$$\mathbf{R} = \mathbf{1} + \mathbf{U}\Sigma\mathbf{V}^T$$

Where rows of R represent grid of SZA and RAZ while columns represent SZA values and wavelength. The representation above comes from EOF of the data. It was shown that variability of R can be described with first few columns of U, Σ , and V. Columns of V represent dependence on SZA and wavelength. They were parameterized.

Parameterization of R vs. actual measurements

Parameterization of R vs. actual measurements

Parameterization of R vs. actual measurements

Modeling black sky albedo

Snowpack was modeled as 2 layers of ice spheres. Top layer is 0.25 mm thick consisting of 40 μ m (radius) spheres. Bottom layer is infinite of 90 μ m spheres. The same RT model was used to calculate reflected radiances and fluxes.

Scene selection algorithm

- Clear sky as recognized by CERES CWG;
- Clear sky snow/ice as recognized by SARB algorithm (Radkevich *et al* 2013 *J Tech*);
- Center of a FOV is within 15 km from Dome C (75° 06' S, 123° 18' E);
- Additional check for clear sky surrounding environment has to be done by analysis of simultaneous MODIS image;
- CALIPSO cloud screening may be used for AQUA observations.