Scarab, First Calibration Results
SCARAB first result

On-ground:
- Long wave calibration
- Short wave calibration

In-orbit:
- Radiometric noise
- Thermal leak
- Gain
- A’ factor
- Location
- Registration
- LA/LA2 comparison
Long wave calibration

Intespace facility
SCARAB / on ground calibration
Two high performance Black Bodies (HGH)

Theorical emissivity
>0.9993

Hot BB temperature :
223° / 323°K

Cold BB filled with
Liquid nitrogen
SCARAB / on ground calibration

- Short wave calibration
- CNES facility
Method:

Uniform data: use of « space » pixels

Standard deviation of 3 pixels x 500 scans

MS mode only (channel 2&3 with solar filter), once per month

Results:

<table>
<thead>
<tr>
<th></th>
<th>Channel 1 visible</th>
<th>Channel 2 solar</th>
<th>Channel 3 total</th>
<th>Channel 4 IR window</th>
</tr>
</thead>
<tbody>
<tr>
<td>Max radiometric noise</td>
<td>LSB</td>
<td>6 LSB</td>
<td>2.5 LSB</td>
<td>2.1 LSB</td>
</tr>
<tr>
<td>Max radiometric noise</td>
<td>W/m²/sr</td>
<td>0.2 W/m²/sr</td>
<td>0.09 W/m²/sr</td>
<td>0.07 W/m²/sr</td>
</tr>
<tr>
<td>Noise requirements</td>
<td>W/m²/sr</td>
<td>1 W/m²/sr</td>
<td>0.5 W/m²/sr</td>
<td>0.5 W/m²/sr</td>
</tr>
</tbody>
</table>

SCARAB first result / noise
Thermal leak:

Channel 2
=> Solar radiance

Thermal leak
=> Thermal radiance

Thermal leak must be evaluated and subtracted to deliver Channel 2 solar radiance.

Thermal leak is estimated from Channel 4
SCARAB first result / thermal leak

<table>
<thead>
<tr>
<th>Channel 2</th>
<th>Night area</th>
</tr>
</thead>
<tbody>
<tr>
<td>Level 0</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Channel 4</td>
<td></td>
</tr>
<tr>
<td>Level 0</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Channel 2</td>
<td>STD value : 0.13 W/m²/sr</td>
</tr>
<tr>
<td>Level 1</td>
<td>(not corrected)</td>
</tr>
<tr>
<td></td>
<td>Mean value : 0.03 W/m²/sr</td>
</tr>
<tr>
<td></td>
<td>STD value : 0.06 W/m²/sr</td>
</tr>
<tr>
<td></td>
<td>≈ 2 LSB</td>
</tr>
</tbody>
</table>

\[
L_{2_SW} = \frac{N_2}{G_{2_sw}} - \left\{ a_2 \cdot (L_{4_IRW})^2 + a_1 \cdot L_{4_IRW} + a_0 \right\}
\]
SCARAB first result / thermal leak

Thermal leak – Evaluation of the efficiency

Night area of 300 scans
Calculation of the mean

Mean < 0.05 W/m²/sr
Thermal leak – Evaluation of the efficiency

Night area of 300 scans
Calculation of the standard deviation

Channel 2, Radiometric noise after thermal correction, night area

STD < 0.11 W/m²/sr < 3 LSB
Gain
Measured with the CALibration Module (CALM)

- 1 lamp for channel 1
- 3 black bodies for channel 2-3-4
- No solar filter on channel 2 (filter wheel)
- CALM mode once per month
SCARAB first result / gain

Channel 1 gain

LSB/W·m²·sr

G1 lamp
G1 on ground
SCARAB first result / gain

LW Gain for Scarab channels 2&3

-32.5
-32.55
-32.6
-32.65
-32.7
-32.75
-32.8
-32.85
-32.9
-32.95
-33
-31.5
-31.55
-31.6
-31.65
-31.7
-31.75
-31.8
-31.85
-31.9
-31.95
-32

G2 LW
G2 LW on ground
G2 stability+0.1%
G2 stability-0.1%
G3 LW
G3 LW on ground
G3 stability+0.1%
G3 stability-0.1%

LSB/ W * m² * sr
SCARAB first result / gain

LW Gain for Scarab channel 4

-206
-206,5
-207
-207,5
-208
-208,5
-209
-209,5
-210

LSB/ W * m² * sr

G4
G4 on ground

+/-0,1%
Gain

Difference between last ground value and in-orbit value ≈ 0.2%

Gain stability is better than +/-2% for channel 1, mainly due to lamp instability.

Gain stability is better than +/-0.1% for channels 2&3.

Gain stability is better than +/-0.2% for channel 4.
SCARAB first result / A’ factor

Channel 2: Solar channel 0.2-4µm Short wave radiance \(L_{sw} \)

Channel 3: Total channel 0.2-200µm Total radiance \(L_{total} \)

Channel 5: Infrared channel 4-200µm long wave radiance \(L_{lw} \)

Channel 5 is computed with:

\[
L_{lw} = L_{total} - A' \times L_{sw}
\]

When channels 2&3 observe a same pure SW source, A’ can be evaluated by:

\[
A' = \frac{L_{total}}{L_{sw}} = \frac{L_3}{L_2}
\]

A’ represents the difference of sensibility in the SW domain, between channel 2 and channel 3.
SCARAB first result / A’ factor

MS Mode:

Channel 2 AND Channel 3 have an identical silica filter

=> Both observe the same pure SW source

=> $A_{ms} = \frac{N_3}{N_2}$

=> $A' = A_{ms} \times \frac{G_{2_{sw}}}{G_3} / T_{filter}$

T_{filter} must be known accurately with on-ground measurements!
SCARAB first result / A’ factor

MS Mode:

The difference between the in orbit value and the sphere value is less than 0.2%.
The stability of the A’ms factor is about +/-0.05% for this first year.
SCARAB first result / A’ factor

Nominal Mode:

Selection of bright clouds:
\[L_{sw} > 250 \text{ W/m}^2/\text{sr} \]
\[L_{ir_window} < 5\text{ W/m}^2/\text{sr} \ (223K) \]

Selection of homogenous area:
10%

Evaluation of LW radiance with Channel 4, with a polynomial P:
\[L_{LW_estimated} = P(L_{ir_window}) \]

Evaluation of A’:
\[A' = \frac{L_{3_total} - L_{lw_estimated}}{L_{2_sw}} \]
Nominal Mode:

A’ value on clouds (nominal image)
SCARAB first result / A’ factor

Comparison for the first three months

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>A’ from MS mode</td>
<td>0.9159</td>
</tr>
<tr>
<td>A’ nominal</td>
<td>0.9180</td>
</tr>
</tbody>
</table>

The difference is around 0.2%
Absolute pointing location

Comparison by massive correlation between Scarab and VeGeTation images.

VGT images: geolocation accuracy of less than 1km
resolution is 1 km
VGT Band 2 is used
cloud free images
Absolute pointing location

Figure 1: Orbit 666 extract from scan 1 to scan 221,
Resampled VGT on the top, SCARAB C2 below
SCARAB first result / Absolute pointing location

Absolute pointing location

<table>
<thead>
<tr>
<th></th>
<th>Nadir</th>
<th>Swath border</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>across track</td>
<td>along track</td>
</tr>
<tr>
<td></td>
<td>across track</td>
<td>along track</td>
</tr>
<tr>
<td>Maximum bias measured</td>
<td>0.4 km</td>
<td>1.3 km</td>
</tr>
<tr>
<td></td>
<td>1.5 km</td>
<td>2.3 km</td>
</tr>
<tr>
<td>Uncertainty</td>
<td>1 km</td>
<td>1 km</td>
</tr>
<tr>
<td></td>
<td>1 km</td>
<td>1 km</td>
</tr>
<tr>
<td>VGT geolocation accuracy less than 1 km</td>
<td>1 km</td>
<td>1 km</td>
</tr>
<tr>
<td></td>
<td>1 km</td>
<td>1 km</td>
</tr>
<tr>
<td>Total</td>
<td>2.4 km</td>
<td>3.4 km</td>
</tr>
<tr>
<td>Requirement</td>
<td>5 km</td>
<td>5 km</td>
</tr>
</tbody>
</table>
Registration

Massive correlation between channels

Nominal mode and MT mode

Across track and along track shifts histograms between C3 and C2 respectively in red and white for MT mode products
SCARAB first result / Registration

Registration for level 1A

<table>
<thead>
<tr>
<th></th>
<th>C1/C2</th>
<th>C3/C2</th>
<th>C4/C3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anticipated surface registration (on-ground measurement)</td>
<td>89 %</td>
<td>97.4 %</td>
<td>93 %</td>
</tr>
<tr>
<td>In orbit measured value</td>
<td>92.1 %</td>
<td>97.3-97.8%</td>
<td>98 %</td>
</tr>
<tr>
<td>Level 1A</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Level 1A2 : All channels are resampled on channel 2

<table>
<thead>
<tr>
<th></th>
<th>C1/C2</th>
<th>C3/C2</th>
<th>C4/C3</th>
</tr>
</thead>
<tbody>
<tr>
<td>In orbit measured value</td>
<td>98.2 %</td>
<td>99.3 %</td>
<td>99.4 %</td>
</tr>
<tr>
<td>Level 1A2</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
To compute synthetic channel 5:

\[L_{lw} = L_{tot} - A'L_{sw} \]

Channel 3 \((L_{tot}) \) and Channel 2 \((L_{sw}) \) must aim at the same location.

At level 1A, the covering of channel 2 by channel 3 is around 98% \((0.05^\circ) \)

As Scarab respects Shannon theorem, it is possible to resample channel 3 on channel 2 with a low level of artifacts, to generate L1A2 products

How to compare the 2 products?

=> With MS mode, Channel 2 and Channel 3 are identical!
=> \(C5 \) should be equal to 0
SCARAB first result / L1A-L1A2 comparison

MS mode 3775

Ch 2

Ch 3

Ch 5
L1A

CH5
L1A2
SCARAB first result / L1A-L1A2 comparison

Ch 2

Lake Malawi / Tanganika

Ch 5
L1A

CH5
L1A2

Madagascar

Madagascar coast

Madagascar coast
<table>
<thead>
<tr>
<th></th>
<th>Standart deviation W/m²/sr</th>
<th>Min W/m²/sr</th>
<th>Max W/m²/sr</th>
<th>Mean W/m²/sr</th>
</tr>
</thead>
<tbody>
<tr>
<td>C2</td>
<td></td>
<td></td>
<td></td>
<td>48</td>
</tr>
<tr>
<td>C5_A</td>
<td>0.57</td>
<td>-3.8</td>
<td>7.8</td>
<td></td>
</tr>
<tr>
<td>C5_A2</td>
<td>0.41</td>
<td>-2.9</td>
<td>7.6</td>
<td></td>
</tr>
</tbody>
</table>

=> No artifacts on level A2
=> Better performances on level A2
Estimation of the absolute calibration error for Channel 5 (LW channel), function of the short wave radiance:

\[e_{A1}(L_{2_sw}) = \frac{\sigma_{C5_A1}(L_{2_sw})}{L_{2_sw}} \]
This value is calculated for the MS mode orbit 3775 for each interval of SW radiance.

For L1A:
- 0.4% at 220 W/m²/sr to 1.2% at 20 W/m²/sr

For L1A2:
- 0.3% at 220 W/m²/sr to 0.9% at 20 W/m²/sr
The absolute calibration budget can be established:

<table>
<thead>
<tr>
<th>L1A2</th>
<th>Bright clouds</th>
<th>Hot / bright scene</th>
<th>Night scene</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>250 SW + 50 LW</td>
<td>210 SW + 130 LW (20°)</td>
<td>0 SW + 80 LW</td>
</tr>
<tr>
<td>Instrumental noise</td>
<td>Random</td>
<td>0.21%</td>
<td>0.11%</td>
</tr>
<tr>
<td>Calibration CALM</td>
<td>Bias</td>
<td>0.12%</td>
<td>0.12%</td>
</tr>
<tr>
<td>A’ factor (0.2%)</td>
<td>Random</td>
<td>1%</td>
<td>0.3%</td>
</tr>
<tr>
<td>Registration and spectral effects</td>
<td>Random</td>
<td>1.5%</td>
<td>0.55%</td>
</tr>
<tr>
<td>Location</td>
<td>Random</td>
<td>0.4%</td>
<td>0.40%</td>
</tr>
<tr>
<td>Budget @1σ %</td>
<td></td>
<td>1.9%</td>
<td>0.8%</td>
</tr>
<tr>
<td>Budget @1σ W/m²/sr</td>
<td></td>
<td>0.95</td>
<td>1.0</td>
</tr>
<tr>
<td>Requirement</td>
<td></td>
<td></td>
<td>1%</td>
</tr>
</tbody>
</table>
Absolute calibration of channel 2 was made in front of an integrating sphere at CNES facilities.

<table>
<thead>
<tr>
<th>Items</th>
<th>Value</th>
<th>Type</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Short wave calibration (sphere)</td>
<td>3% @2σ</td>
<td>Biais</td>
<td>1.5%</td>
</tr>
<tr>
<td>Error on spectral response</td>
<td></td>
<td>Biais</td>
<td>0.4%</td>
</tr>
<tr>
<td>Thermal gain correction</td>
<td>0.08%/°</td>
<td>Random</td>
<td>0.03%</td>
</tr>
<tr>
<td>dT= 0.04° @1σ</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>20% of the thermal leak @1σ</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Thermal leak correction</td>
<td>20% of the thermal leak @1σ</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Location</td>
<td>0.06°@1σ</td>
<td>Random</td>
<td>0.4%</td>
</tr>
<tr>
<td>Budget at 1 sigma</td>
<td></td>
<td></td>
<td>1.6%</td>
</tr>
</tbody>
</table>
SCARAB first result / Conclusion

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Status</th>
<th>Coherence with on-ground value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Radiometric noise</td>
<td>=> Very low</td>
<td></td>
</tr>
<tr>
<td>Thermal leak</td>
<td>=> Coherent with on-ground value</td>
<td></td>
</tr>
<tr>
<td>Gain value</td>
<td>=> Very stable</td>
<td>0.2%</td>
</tr>
<tr>
<td></td>
<td>=> Coherence with on-ground value</td>
<td></td>
</tr>
<tr>
<td>A’ factor</td>
<td>=> Very stable</td>
<td>0.2%</td>
</tr>
<tr>
<td></td>
<td>=> Coherence with on-ground value</td>
<td></td>
</tr>
<tr>
<td>Location</td>
<td><5 km as required</td>
<td></td>
</tr>
<tr>
<td>Registration</td>
<td>=> Coherent with on-ground value</td>
<td></td>
</tr>
<tr>
<td></td>
<td>=> Very good for L1A2 product</td>
<td></td>
</tr>
</tbody>
</table>