Progress in CERES Clear-sky Aerosol Optical Thickness Dependent Shortwave ADM over Ocean

Lusheng Liang1, Wenying Su2, Zachary Eitzen1, Joseph Corbett1
1SSAI, 2LARC
Oct 24, 2012
1. Sort measured radiances into angular and wind speed bins \((w; \theta_0, \theta, \phi)\) and calculate mean radiances;

2. Calculate mean flux by integrating the mean radiances over all \(\theta\) and \(\phi\);

3. Define anisotropic factor;

4. Convert measured radiances to fluxes;
Aerosol in Ed.2 Clear-sky ADM over Ocean

• AOD is not directly accounted for in Ed.2 ADM;
• It is implicitly accounted for by a theoretical scale factor when radiances are converted to fluxes (Loeb et al., 2005).

\[F = \frac{\pi I_O}{R \left(\frac{R_{I_0}^{th}}{R_{\hat{i}}^{th}} \right)} \]

• R is the anisotropic factor for converting \hat{i} at $(w, \theta_0, \theta$ and $\phi)$ to F;
• $R_{\hat{i}}^{th}$ is the theoretical anisotropic factor for \hat{i};
• $R_{I_0}^{th}$ is the theoretical anisotropic factor for I_0.
How to quantify the performance of an ADM?

RMS of normalized radiance differences between ADM-prediction and observation

\[
RMS = \sqrt{\frac{1}{n} \sum \left(\frac{\hat{I}^i}{\langle \hat{I} \rangle} - \frac{I^i_o}{\langle I_o \rangle} \right)^2}
\]

\(\hat{I}^i\) is the radiance value of ADM at \((w, \theta_0, \theta \text{ and } \phi)\),

\(I^i_o\) is the radiance value of the theoretical model at \((w, \theta_0, \theta \text{ and } \phi)\),

\(\langle \rangle\) is the grid mean.
Where to improve?

Where to improve?

RMS in Ed.2 ADM

(Mar 2000 to May 2005, Terra RAP mode)

RMS is a function of AOD and aerosol type
1: AOD-classified ADM

2: AOD-and-type classified ADM
(two-model-minimal approach with MODIS bands 1 and 2)

3: AOD-and-type classified ADM
(AOD-fine-mode-fraction approach with MODIS bands 1 and 2)
1: AOD-classified ADM

Given a SSF, retrieve AOD based on an aerosol model

- 0-33% AOD bins
- 33-66% AOD bins
- 66-100% AOD bins
AOD retrieval - comparison with MODIS
AOD-classified ADM -- OPAC maritime-tropic model

Ed.2 ADM RMS

New ADM RMS
AOD-classified ADM -- OPAC maritime-tropic model
1: AOD-classified ADM

2: AOD-and-type-classified ADM
(two-model-minimal-retrieval-error approach with MODIS bands 1 and 2)

3: AOD-and-type-classified ADM
(AOD-fine-mode-fraction approach with MODIS bands 1 and 2)
Given a SSF, retrieve AODs for an aerosol model representing the fine mode aerosol and an aerosol model representing the coarse mode aerosol.

Compare two retrieval errors

Fine-mode-like aerosols
- 0-33% AOD bins
- 33-66% AOD bins
- 66-100% AOD bins

Coarse-mode-like aerosols
- 0-33% AOD bins
- 33-66% AOD bins
- 66-100% AOD bins
Aerosol classification

percentage of coarse-mode-like aerosols

(OPAC dust-urban model)

(MODIS bands 1-2, Ed.2 2000-2001 raps)
percentage of coarse-mode-like aerosols

(MODIS 1st-9th model)
AOD-and-type-classified ADM
(OPAC dust-urban model, two-model-minimal-retrieval-error approach)

Ed.2 ADM RMS

New ADM RMS
AOD-and-type-classified ADM

(OPAC dust-urban model, two-model-minimal-retrieval-error approach)

\[\Delta RMS = -2.31\% \]

\[\Delta F = -0.09 \text{w/m}^2 \]
AOD-and-type-classified ADM
(MODIS 1st-9th model, two-model-minimal-retrieval-error approach)

Ed.2 ADM RMS

New ADM RMS
AOD-and-type-classified ADM

(MODIS 1st-9th model, two-model-minimal-retrieval-error approach)
1: AOD-classified ADM

2: AOD-and-type-classified ADM
 (two-model-minimal-retrieval-error approach with MODIS bands 1 and 2)

3: AOD-and-type-classified ADM
 (AOD-fine-mode-fraction approach with MODIS bands 1 and 2)
3: AOD-and-type-classified ADM
AOD-fine-mode-fraction approach

Given a SSF, retrieve AOD and fine-mode fraction (f)

If $f < 0.5$

- **Fine-mode-like aerosols**
 - 0-33% AOD bins
 - 33-66% AOD bins
 - 66-100% AOD bins

- **Coarse-mode-like aerosols**
 - 0-33% AOD bins
 - 33-66% AOD bins
 - 66-100% AOD bins
Aerosol and fine-mode fraction retrieval

CERES (OPAC dust-urban model)
Fine mode fraction

MODIS
Fine mode fraction

AOD

(MODIS bands 1-2, Ed.2 2000-2001 raps)
Aerosol and fine-mode fraction retrieval

CERES (MODIS 1st-9th model) MODIS

Fine mode fraction

AOD

(MODIS bands 1-2, Ed.2 2000-2001 raps)
AOD-and-type classified ADM

(OPAC dust-urban model, AOD-and-fine-mode-fraction approach)

Ed.2 ADM RMS

New ADM RMS
AOD-and-type classified ADM

(OPAC dust-urban model, AOD-and-fine-mode-fraction approach)

$\Delta RMS = -1.86\%$

New - Ed. 2

$\Delta F = -0.37 \text{w/m}^2$

$\Delta RMS (%)$

$\Delta F (\text{w/m}^2)$
AOD-and-type classified ADM

(MODIS 1st-9th model, AOD-and-fine-mode-fraction approach)
AOD-and-type classified ADM
(MODIS 1st-9th model, AOD-and-fine-mode-fraction approach)

$\Delta RMS = -1.83\%$

$\Delta F = -0.09 \text{ w/m}^2$

New - Ed. 2 \hspace{1cm} $\Delta RMS (\%)$

$\Delta F (\text{w/m}^2)$
Summary

<table>
<thead>
<tr>
<th>ADM</th>
<th>Ed.2 ADM RMS (%)</th>
<th>ΔRMS (%)</th>
<th>ΔF(w/m²)</th>
</tr>
</thead>
<tbody>
<tr>
<td>AOD-classified</td>
<td>Three AOD-percentile bins</td>
<td>10.55</td>
<td>-2.00</td>
</tr>
<tr>
<td>AOD-and-type-classified (two-model-minimal-retrieval-error approach)</td>
<td>OPAC dust-urban model</td>
<td>10.55</td>
<td>-2.31</td>
</tr>
<tr>
<td></td>
<td>MODIS 1st-9th model</td>
<td>10.55</td>
<td>-2.09</td>
</tr>
<tr>
<td>AOD-and-type-classified (AOD-and-fine-mode-fraction approach)</td>
<td>OPAC dust-urban model</td>
<td>10.55</td>
<td>-1.86</td>
</tr>
<tr>
<td></td>
<td>MODIS 1st-9th model</td>
<td>10.55</td>
<td>-1.83</td>
</tr>
</tbody>
</table>

- The performance of AOD-classification ADM is nearly as good as the AOD-and-type-classified ADMs;
- As the performance of AOD-and-type-classified ADM, OPAC dust-urban model combination is better than MODIS 1st-9th model combination.
Future work

- The ADM performance with AOD-and-fine-mode-fraction approach could be better with a different fine-mode-fraction stratification.
- The ADM performance can be potentially improved with different MODIS aerosol model combinations.
- Examine ADM performances with Ed.4 cloud product and MODIS band 1-6 radiances.