THE CHALLENGE OF \(1{\%}\) per mil

Stephen E. Schwartz

Upton, Long Island, NY

CERES Science Team Meeting
Newport News VA
April 27-29, 2010

www.ecd.bnl.gov/steve
OVERVIEW

Introductory remarks

Earth’s energy balance and perturbations

Forcing, response, climate sensitivity

Warming discrepancy and committed warming

Implications: Allowable future CO₂ emissions

Why hasn’t Earth warmed as much as expected?

Approaches to determining climate sensitivity

Concluding observations
One mill = $0.001
Analytical chemists routinely work to one part in a thousand.
Pricing gasoline to 0.1 cent per gallon implies measurement accuracy of 0.3 ‰. Equivalent to 1 cubic centimeter in a gallon.
Hi all

Well I have my own article on where the heck is global warming? We are asking that here in Boulder where we have broken records the past two days for the coldest days on record. We had 4 inches of snow. The high the last 2 days was below 30F and the normal is 69F, and it smashed the previous records for these days by 10F. The low was about 18F and also a record low, well below the previous record low. This is January weather (see the Rockies baseball playoff game was canceled on saturday and then played last night in below freezing weather).

The fact is that we can't account for the lack of warming at the moment and it is a travesty that we can’t. The CERES data published in the August BAMS 09 supplement on 2008 shows there should be even more warming: but the data are surely wrong. Our observing system is inadequate.

Kevin
341.3 - (101.9 + 238.5) = 0.9 W m$^{-2}$ net imbalance.
Steve,

On the accuracy of net toa imbalance: the actual value is a ~few tenths of a Wm-2, so we need its absolute accuracy to a fraction of that. Even with perfect satellite calibration, I don’t think we can realistically get the absolute uncertainty in the net imbalance to much less than 0.5 Wm-2, roughly what I think the uncertainty is from in-situ observations of ocean heat content. . . . The problem is that net imbalance from satellite is determined from the difference between two large terms of order 340 Wm-2.

For the outgoing SW (~100 Wm-2) and outgoing LW (~240 Wm-2) that CERES measures, even 0.2% absolute accuracy doesn’t gets us close (sqrt[0.2^2 + 0.48^2] = 0.5 Wm-2). Note that we’re a long way from 0.2% absolute accuracy today. . . .
As I’ve mentioned before, the satellite observations are far more precise than they are absolutely accurate. We therefore can use satellite observations quite effectively at monitoring the short and long-term changes in the incoming, outgoing and net TOA radiation, as well as the associated cloud and aerosol changes (although the latter have sampling challenges due to clouds, as you know). The satellite observations also provide great spatial coverage, and when combined with geostationary data (as is done in CERES), temporal coverage. . . . I see our best hope moving forward is in using long-term satellite observations combined with in-situ ocean heat content measurements.

Regards,

Norman

Concerns over photometric accuracy and over spatial and temporal integration.
Toward Optimal Closure of the Earth’s Top-of-Atmosphere Radiation Budget

NORMAN G. LOEB,* BRUCE A. WIELICKI,* DAVID R. DOELLING,* G. LOUIS SMITH,†
DENNIS F. KEYES,# SEIJI KATO,* NATIVIDAD MANALO-SMITH,# AND TAKMENG WONG*

ABSTRACT

Despite recent improvements in satellite instrument calibration and the algorithms used to determine reflected solar (SW) and emitted thermal (LW) top-of-atmosphere (TOA) radiative fluxes, a sizeable imbalance persists in the average global net radiation at the TOA from satellite observations. This imbalance is problematic in applications that use earth radiation budget (ERB) data for climate model evaluation, estimate the earth’s annual global mean energy budget, and in studies that infer meridional heat transports. This study provides a detailed error analysis of TOA fluxes based on the latest generation of Clouds and the Earth’s Radiant Energy System (CERES) gridded monthly mean data products [the monthly TOA/surface averages geostationary (SRBAVG-GEO)] and uses an objective constraint algorithm to adjust SW and LW TOA fluxes within their range of uncertainty to remove the inconsistency between average global net TOA flux and heat storage in the earth–atmosphere system. The 5-yr global mean CERES net flux from the standard CERES product is 6.5 W m^{-2}, much larger than the best estimate of 0.85 W m^{-2} based on observed ocean heat content data and model simulations. The major sources of uncertainty in the CERES estimate are from instrument calibration (4.2 W m^{-2}) and the assumed value for total solar irradiance (1 W m^{-2}). After adjustment, the global mean CERES SW TOA flux is 99.5 W m^{-2}, corresponding to an albedo of 0.293, and the global mean LW TOA flux is 239.6 W m^{-2}. These values differ markedly from previously published adjusted global means based on the ERB Experiment in which the global mean SW TOA flux is 107 W m^{-2} and the LW TOA flux is 234 W m^{-2}.
GLOBAL ENERGY BALANCE
Global and annual average energy fluxes in watts per square meter

\[
\frac{1}{4} S_0 \approx 254K
\]

\[
\alpha = 31\%
\]

\[
\frac{1}{4} S_0 (1-\alpha) = \sigma T^4
\]

Stefan-Boltzmann radiation law

Shortwave

Longwave

Schwartz, 1996, modified from Ramanathan, 1987
RADIATIVE FORCING

A change in a radiative flux term in Earth’s radiation budget, ΔF, W m$^{-2}$.

Working hypothesis:

On a global basis radiative forcings are additive and fungible.

- This hypothesis is fundamental to the radiative forcing concept.
- This hypothesis underlies much of the assessment of climate change over the industrial period.
Global carbon dioxide concentration and infrared radiative forcing over the last thousand years.
Greenhouse gas forcing is considered accurately known.
Gases are uniformly distributed; radiation transfer is well understood.
GLOBAL ENERGY BALANCE
Global and annual average energy fluxes in watts per square meter

\[\frac{1}{4} S_0 (1 - \alpha) = \sigma T^4 \]

\[\alpha = 31\% \]

\[\Delta F = +2.6 \text{ W m}^{-2} \]

Schwartz, 1996, modified from Ramanathan, 1987
The change in global and annual mean temperature, ΔT, K, resulting from a given radiative forcing.

Working hypothesis:

The change in global mean temperature is proportional to the forcing, but independent of its nature and spatial distribution.

\[\Delta T = S \Delta F \]
CLIMATE SENSITIVITY

The *change* in global and annual mean temperature per unit forcing, S, K/(W m$^{-2}$),

\[S = \frac{\Delta T}{\Delta F}. \]

Climate sensitivity is not accurately known and is the objective of much current research on climate change.

Climate sensitivity is often expressed as the temperature for doubled CO$_2$ concentration $\Delta T_{2\times}$.

\[\Delta T_{2\times} = S \Delta F_{2\times} \]
\[\Delta F_{2\times} \approx 3.7 \text{ W m}^{-2} \]
Current estimates of Earth’s climate sensitivity are centered about a CO₂ doubling temperature $\Delta T_{2\times} = 3$ K, but with substantial uncertainty. Range of sensitivities of current models roughly coincides with IPCC “likely” range.
Why Hasn’t Earth Warmed as Much as Expected?

Stephen E. Schwartz
Brookhaven National Laboratory, Upton, New York

Robert J. Charlson
University of Washington, Seattle, Washington

Ralph A. Kahn
NASA Goddard Space Flight Center, Greenbelt, Maryland

John A. Ogren
NOAA Earth System Research Laboratory, Boulder, Colorado

Henning Rodhe
Department of Meteorology, Stockholm University, Stockholm, Sweden

The DOI for this manuscript is doi:10.1175/2009JCLI3461.1
HOW MUCH WARMING IS EXPECTED?

For increases in CO$_2$, CH$_4$, N$_2$O, and CFCs over the industrial period

\[F = 2.6 \text{ W m}^{-2} \]

Expected temperature increase:

\[\Delta T_{\text{exp}} = \frac{F}{F_{2\times}} \times \Delta T_{2\times} = \frac{2.6}{3.7} \times 3 \text{ K} = 2.1 \text{ K} \]

Observed temperature increase:

\[\Delta T_{\text{obs}} = 0.8 \text{ K} \]
EXPECTED INCREASE IN GLOBAL TEMPERATURE
Long-lived GHGs only – Dependence on climate sensitivity

Equilibrium Climate Sensitivity, K/(W m⁻²)

Increase in GMST ΔT, K

CO₂ Doubling Temperature ΔT_{2X}, K

This discrepancy holds throughout the IPCC AR4 “likely” range for climate sensitivity.
HOW MUCH WARMING IS EXPECTED?

For increases in CO₂, CH₄, N₂O, and CFCs over the industrial period

\[F = 2.6 \text{ W m}^{-2} \]

Expected temperature increase:

\[\Delta T_{\text{exp}} = \frac{F}{F_{2\times}} \times \Delta T_{2\times} = \frac{2.6}{3.7} \times 3 \text{ K} = 2.1 \text{ K} \]

Observed temperature increase:

\[\Delta T_{\text{obs}} = 0.8 \text{ K} \]

Because of uncertainty in climate sensitivity the committed warming is likewise uncertain.
ALLOWABLE FUTURE CO\textsubscript{2} EMISSIONS

How much fossil carbon can be burned and emitted into the atmosphere (as CO\textsubscript{2}) without exceeding a given threshold for “dangerous anthropogenic interference” with the climate system?

Answer depends on target threshold and climate sensitivity.

Premise of the calculation:

Forcings by LLGHG’s only; result expressed as equivalent CO\textsubscript{2}.
ALLOWABLE FUTURE CO₂ EMISSIONS

Dependence on climate sensitivity and acceptable increase in temperature relative to preindustrial

For $\Delta T_{\text{max}} = 2$ K . . .

If sensitivity $\Delta T_{2\times}$ is 3 K, **no more emissions.**

If sensitivity $\Delta T_{2\times}$ is 2 K, \sim **30 more years of emissions at present rate.**

If sensitivity $\Delta T_{2\times}$ is 4.5 K, **threshold is exceeded by \sim30 years.**
WHY HASN’T THE EARTH CLIMATE WARMED AS MUCH AS EXPECTED?

FROM FORCING BY LONG-LIVED GREENHOUSE GASES?

• Uncertainty in greenhouse gas forcing.
• Countervailing natural cooling over the industrial period.
• Lag in reaching thermal equilibrium.
• Countervailing cooling forcing by aerosols.
• Climate sensitivity lower than current estimates.
CLIMATE RESPONSE TO FORCING

Upon application of a forcing to climate initially at equilibrium

\[
\text{Global heating rate} = \text{Forcing} - \text{Response}
\]

\[
N = F - S^{-1} \Delta T_s
\]

For positive forcing net downwelling radiation at top of atmosphere immediately increases by the amount of the forcing.

As surface temperature \(T_s \) increases, outgoing longwave radiation increases and net downwelling radiation decreases until new equilibrium is reached.
EFFECTIVE FORCING

\[N = F - S^{-1} \Delta T_s \]

In general, not at equilibrium,

\[\Delta T_s = S(F - N) \]

Define effective forcing, \(F_{\text{eff}} \equiv F - N \)

Use of effective forcing permits determination of expected temperature increase \(\Delta T_s \) as

\[\Delta T_s = SF_{\text{eff}} \]

Need to determine net heating rate of Earth, \(N \).
APPROACH TO ACCOUNTING FOR DISEQUILIBRIUM

Determine global heating rate from *increase in heat content of global ocean*.

Evaluate effective forcing as $F_{\text{eff}} \equiv F - N$.

Compare observed ΔT_s to that expected for effective forcing.

Need net heating rate accurate to small fraction of the GHG forcing!

Desired but not yet available from satellite measurements.
GLOBAL HEATING RATE FROM OCEAN HEAT CONTENT

Heat content of global ocean – surface to 700 m

Levitus et al GRL 09

0.17 W m\(^{-2}\)
0.25 W m\(^{-2}\)
Average: 0.21 ± 0.07 W m\(^{-2}\)

Accounting for heat to 3 km: factor of 1.44.
Accounting for other heat sinks (air, land, melting of ice) factor of 1.19.
Total heating rate 0.37 ± 0.12 W m\(^{-2}\).
Little of the warming discrepancy can attributed to thermal disequilibrium.
GLOBAL HEATING RATE FROM OCEAN HEAT CONTENT
Heat content of global ocean – surface to 700-750 m

Levitus et al GRL 09
0.17 W m\(^{-2}\)
0.25 W m\(^{-2}\)
Average: 0.21 ± 0.07 W m\(^{-2}\)

Willis et al JGR C 04
0.86 W m\(^{-2}\)

Willis slope is basis of Trenberth *et al.* imbalance.
Heating rate would be even greater if it accounted for deep ocean and other sinks (air, land, melting of ice).
Total forcing includes other anthropogenic and natural (solar) forcings. Forcing by tropospheric ozone, \(\sim 0.35 \text{ W m}^{-2} \), is the greatest of these. Uncertainty in aerosol forcing dominates uncertainty in total forcing.
The warming discrepancy is certainly resolved by countervailing aerosol forcing (within the IPCC range) for virtually any value of sensitivity.
APPROACHES TO DETERMINING CLIMATE SENSITIVITY

Climate models

Evaluate by performance on current climate
Evaluate by performance over instrumental record
MODEL ERROR IN UPWELLING TOA IRRADIANCE

Model – ERBE in 23 AR4 Models

Annual-Zonal Mean for 1985-1989

IPCC AR4, Supplement 8, 2007
Simulations that incorporate anthropogenic forcings, including increasing greenhouse gas concentrations and the effects of aerosols, and that also incorporate natural external forcings provide a **consistent explanation of the observed temperature record**.

These simulations used models with **different climate sensitivities, rates of ocean heat uptake and magnitudes and types of forcings**.

IPCC AR4, 2007
APPROACHES TO DETERMINING CLIMATE SENSITIVITY

Climate models
Evaluate by performance on current climate
Evaluate by performance over instrumental record

Empirical
Paleo: $\Delta Temperature/\Delta Flux$, paleo to present
Instrumental record of temperature and forcing
Sensitivity = Time constant/Heat Capacity

Satellite measurement: $d(Flux - Forcing)/dT_Temperature$
ENERGY BALANCE EQUATION

Global heating rate = Forcing – Response

\[N = F - S^{-1} \Delta T_s \]

Upon rearrangement:

\[F - N = S^{-1} \Delta T_s \]

Suggests plotting \(F - N \) vs \(\Delta T_s \); slope = \(S^{-1} \).

Concerns:

Need to know forcing \(F \).

Need accurate value of heating rate \(N \).

Small range of \(\Delta T_s \) available to get meaningful slope.
DETERMINATION OF CLIMATE SENSITIVITY
Slope of (Flux – Forcing) vs 60°N–60°S Mean Surface Temperature
CERES Monthly Average Total Upwelling TOA Flux
Secular increase in LW GHG forcing

Slope is well defined, leading to precise sensitivity:
\[S = 0.70 \pm 0.06 \text{ K/(W m}^{-2}\text{)}; \Delta T_{2x} = 2.6 \pm 0.24 \text{ K.} \]

Large temperature span is due to seasonal variation of GMST;
question over applicability to secular temperature change.
Slope of (Flux – Forcing) vs Global Mean Surface Temperature
CERES Annual Average Total Upwelling TOA Flux
Secular increase in LW GHG forcing

HadCRUT3 global temperature anomaly (K)

Murphy, Solomon, Portmann, Rosenlof, Forster & Wong, JGR 09

Slope is poorly defined, not yielding meaningful sensitivity:

\[S^{-1} = 0.69 \pm 0.78 \text{ W m}^{-2} \text{ K}^{-1}; \quad S = 1.4^{+\infty}_{-0.8} \text{ K/(W m}^{-2}); \quad \Delta T_{2x} = 5.4^{+\infty}_{-2.8} \text{ K.} \]

Cause of interannual variability is not known; might be extended to 2009 to better determine slope.
CONCLUDING OBSERVATIONS

- Accurate knowledge of Earth’s climate sensitivity is enormously important to planning the world’s energy future.
- Present uncertainty in climate sensitivity does not constrain even the sign of how much more CO$_2$ can be added to the atmosphere before exceeding any given warming commitment.
- The warming discrepancy is due mainly to climate sensitivity lower than IPCC best estimate and/or offset by aerosol forcing, with little contribution from lack of equilibrium.
- Satellite measurement of Earth’s energy imbalance, accurate to 1%, is essential to determining climate sensitivity.