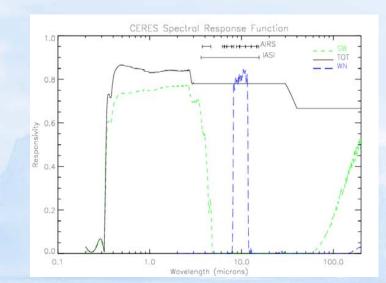


Fengying Sun, Mitchell D. Goldberg, Xingpin Liu and John J. Bates

November 5, 2009 Fall 2009 CERES Science Team Meeting at the Marriott Hotel in Fort Collins, CO

- Motivation
- Method
- Training regression coefficients
- Results
- Summary and next work

Motivation


AIRS:

10 A

- 2378 channel spectrometer in 3.74 -15.4 μm.
- More information content than AVHRR and HIRS.
- High radiometric accuracy and longterm spectral stability.

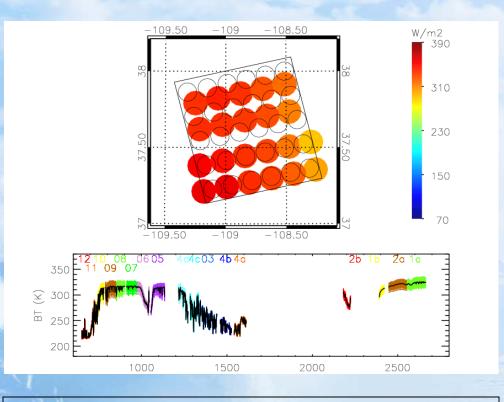
CERES:

- Three-channel broadband radiometer.
- High radiometric accuracy and high accuracy of CERES OLR.
- Directly estimate TOA OLR from AIRS hyper-spectral radiance measurements. CERES SSF LW outgoing fluxes is used as 'truth'.
 - Avoid bias in RTA.
 - Avoid errors in level 2 products.

Method: principle component regression

(DOC(1))

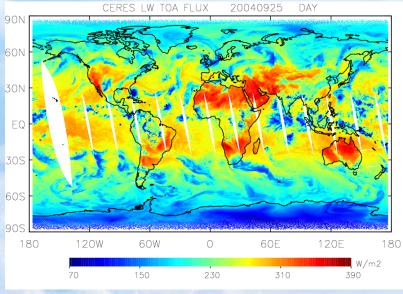
AIRS OLR is a least square regression between CERES OLR and principal component scores of AIRS radiances:

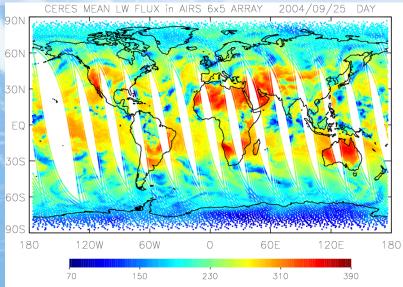

$$OLR = A_0 + \sum_{k=1}^{K} A(k) \bullet P(k) \qquad P(k) = \begin{pmatrix} PCS(1) \\ PCS(2) \\ \dots \\ PCS(K) \end{pmatrix}$$

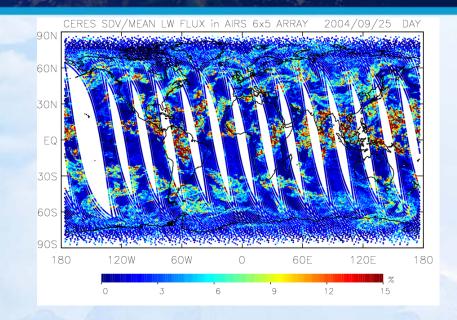
where, A are regression coefficients at eight regimes of viewing angle. PCS are AIRS radiance principle component scores:

$$PCS(k) = \frac{E^{T}(k,n) \bullet \Delta\Theta(n)}{\sqrt{\lambda(k)}} \qquad \Delta\Theta(n) = \frac{R(n) - \langle R \rangle(n)}{NE\Delta N(n)}$$

where, $\lambda(k)$ and E(n, k) are eigenvalues and eigenvectors of covariance matrix of AIRS normalized radiance, got from another training ensemble of AIRS radiances.




Up panel: black circles are AIRS footprints. Color rounds are CERES TOA longwave fluxes. Low panel: color lines are AIRS BT within AIRS 6x5 array. Black line is their mean BT of its 1707 'pristine' channels.


- AIRS: 1.1° x 0.6° FOV 13.5 km at nadir
- CERES: 1.3° x 2.6° FOV
 20 km at nadir
- Big box: 6x5 array of AIRS FOVs
- Averaging CERES OLR and AIRS radiances in big box in order to minimize the effect of the differences in the view and scanning properties of two instruments.

CONTRACT OF COMMENT

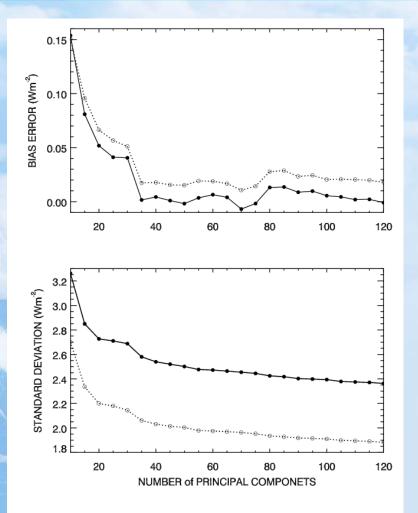
Mean and CV of CERES outgoing longwave fluxes in big box

Define: coefficient variation (CV) of CERES OLR in the big box: CV = 100.* STDDEV / MEAN

- CV ≤ 5% uniform scenes, used to training regression coefficients
- CV > 5% non-uniform scenes

Training and test ensembles

Training ensemble: 16 days

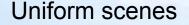

NOR

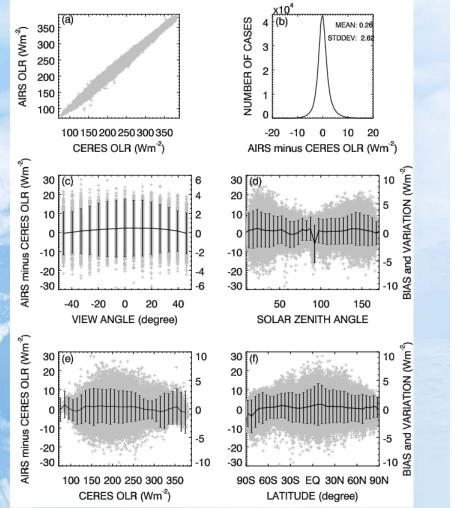
Nov. 12, 2005					
Mar. 6, 2006					
Jun. 3, 2006					
Sept. 6, 2006					
Dec. 6, 2006					
Feb. 26, 2007					
May 12, 2007					
Jul. 26, 2007					
Total :1,521,993 pairs					

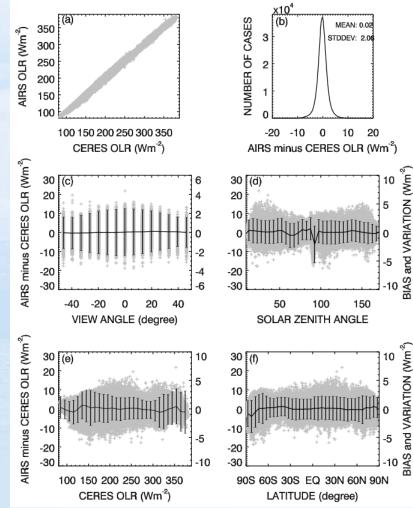
Test ensemble: 8 days

Jun 6, 2004				
Nov. 23, 2004				
Mar 15, 2005				
Sept. 8, 2005				
May 20, 2006				
Jul. 12, 2006				
Jan. 1, 2007				
Aug. 24, 2007				
Total : 759,669 pairs				

Determination of No. of AIRS radiance eigenvectors

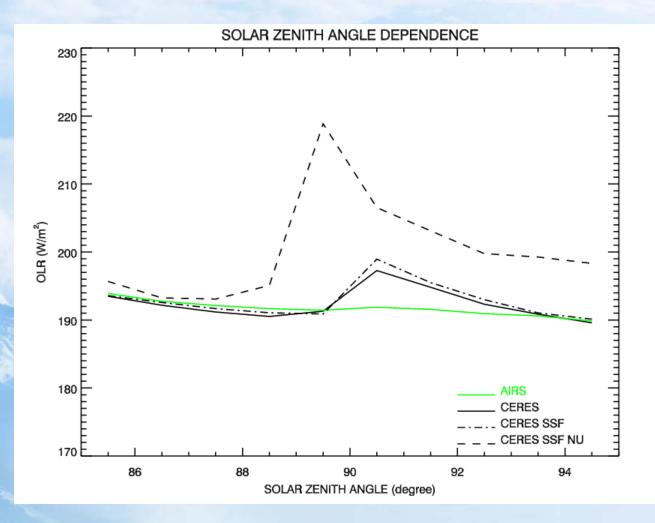

Solid line: all-sky scenes; dotted line: uniform scenes

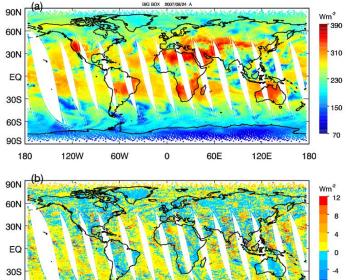

- Lower biases when the no. of principle components from 35 to 75.
- K=35, reduce biases when $OLR \ge 310 \text{ Wm}^{-2}$.
- To training regression coefficients: K=35 and use uniform scenes only.

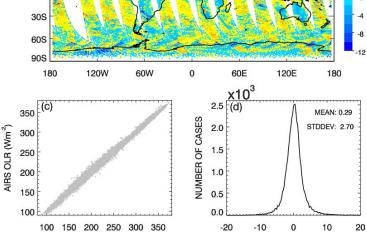

Statistics for the test ensemble

ALL scenes

NOAA



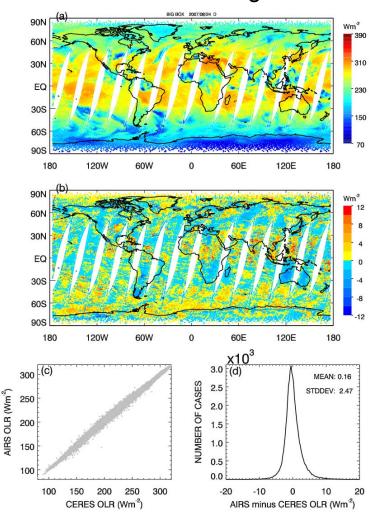

AIRS and CERES OLR in twilight region



AIRS OLR in big box

Ascending

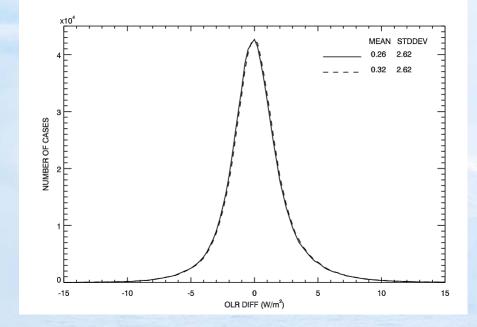
MENT OF



CERES OLR (Wm⁻²)

AIRS minus CERES OLR (Wm⁻²)

Descending



REAL AND AIMOS PROPERTY OF COMMON

Sensitive study 1: impact of spatial average

- Apply regression coefficients to AIRS mean spectra in big box (solid line).
- Apply regression

 coefficients to each AIRS
 spectrum in big box, then
 average 30 OLR values
 (dashed line).

Sensitive study 2: impact of the temporal coverage of the training ensemble

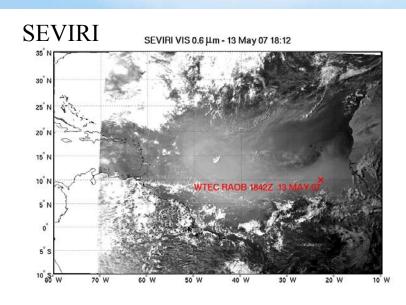
Training ensemble

Nov. 25, 2003	Nov. 12, 2005
Jan. 20, 2004	Mar. 6, 2006
Apr. 13, 2004	Jun. 3, 2006
Jul. 6, 2004	Sept. 6, 2006
Oct. 26, 2004	Dec. 6, 2006
Feb. 15, 2005	Feb. 26, 2007
May 12, 2005	May 12, 2007
Aug. 11, 2005	Jul. 26, 2007

- Method 1: training the coefficients using all the training ensemble (16 days).
- Method 2: training the coefficients using subset of the training ensemble (**7 days** in red color).
- Apply two set coefficients to the test ensemble.

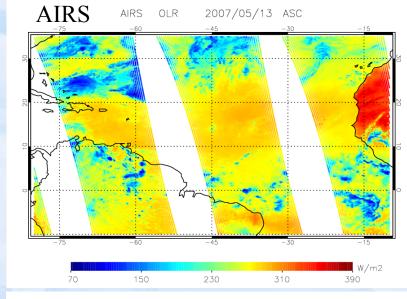
Biases of the test ensemble (Units in Wm⁻²)

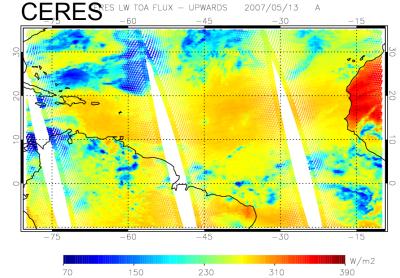
Days	Uniform scenes		Non-uniform scenes		All-sky scenes	
-	Method 1	Method 2	Method 1	Method 2	Method 1	Method 2
Jun 6, 2004	0.16	0.13	1.31	1.37	0.42	0.41
Nov. 23, 2004	-0.28	-0.33	0.88	0.93	-0.02	-0.05
Mar 15, 2005	0.18	0.14	1.11	1.16	0.39	0.37
Sept. 8, 2005	0.31	0.27	1.13	1.17	0.50	0.48
May 20, 2006	-0.03	-0.06	1.12	1.17	0.24	0.23
Jul. 12, 2006	0.09	0.04	1.00	1.04	0.31	0.28
Jan. 1, 2007	-0.27	-0.31	0.86	0.90	-0.03	-0.05
Aug. 24, 2007	-0.01	-0.07	1.03	1.06	0.23	0.19



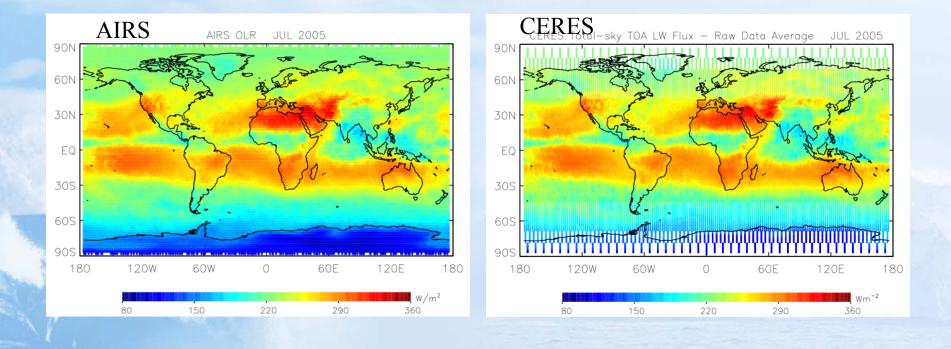
NORA

and the second second	Uniform scenes		Non-uniform scenes		All-sky scenes	
Days	Method 1	Method 2	Method 1	Method 2	Method 1	Method 2
Jun 6, 2004	2.02	2.02	3.82	3.81	2.59	2.60
Nov. 23, 2004	2.08	2.09	3.90	3.89	2.65	2.67
Mar 15, 2005	2.07	2.07	3.96	3.94	2.65	2.65
Sept. 8, 2005	2.08	2.07	3.83	3.81	2.62	2.61
May 20, 2006	2.04	2.04	3.82	3.82	2.62	2.63
Jul. 12, 2006	2.03	2.02	3.78	3.76	2.60	2.60
Jan. 1, 2007	2.12	2.13	3.72	3.70	2.59	2.60
Aug. 24, 2007	1.96	1.95	3.87	3.86	2.56	2.55

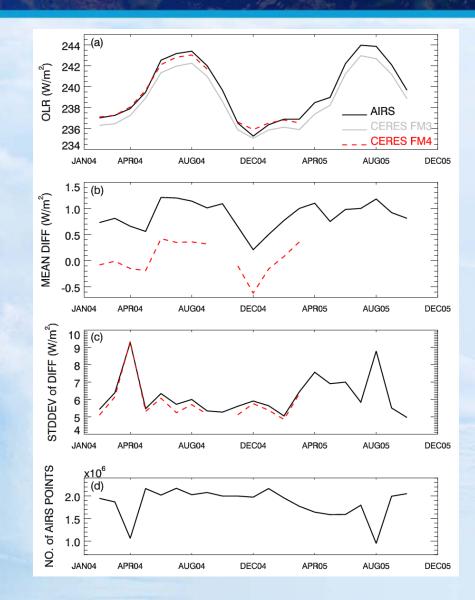

CLUE AND ATMOSPHERE CLUE NO AND ATMOSPHERE TO THE THE AND ATMOSPHERE THE ATMOSPHE


AIRS and CERES OLR in full resolution

Saharan dust outflow event on May 13, 2007

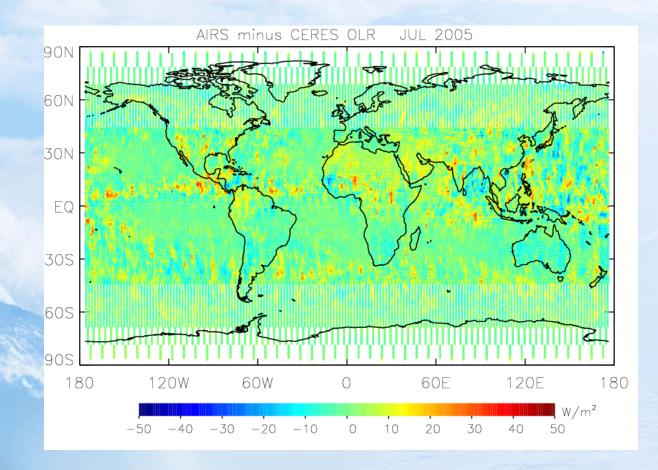

In courtesy of Nick Nalli

AIRS and CERES Monthly OLR in July 2005



- AIRS monthly OLR is built from 0.5°x2° daily gridded radiance dataset.
- CERES monthly OLR is the total-sky TOA longwave flux (raw data average) from CERES Aqua FM3 Edition2A SRBAVG dataset.

Global monthly AIRS and CERES OLR


NO ATMOSA NO AA

TMENT OF

Monthly OLR difference

NORA

- Larger variation of OLR difference due to spatial sampling discrepancy.
- Produce AIRS level-3 OLR from AIRS level1b radiances.

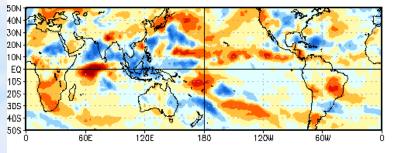
AIRS and AVHRR OLR anomalies

40

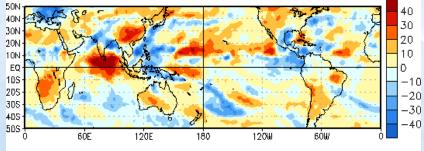
30

20

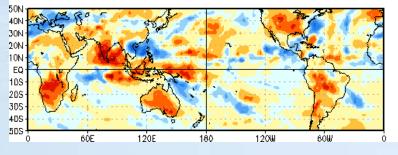
10


0

Monitor anomalies of tropical precipitation (MJO)


3 SEP 2008 to 12 SEP 2008 50N 40N 30N 20N 10N EQ 10S 20S 30S 40S 50S 60E 120E 180 120W 60W 0 Wm 13 SEP 2008 to 22 SEP 2008 50N 40N 30N 20N 10N EQ 10S -10 20S -20 30S -30 40S 50S -40 60E 120W 60W 0 120E 180 23 SEP 2008 to 30 SEP 2008 50N 40N 30N 20N 10N EQ 10S 20S 30S 40S 50S 60E 120E 120W 60W 0 180 0

AIRS OLR Anomalies relative to the mean from 2004 to 2008


OLR Anomalies 3 SEP 2008 to 12 SEP 2008

13 SEP 2008 to 22 SEP 2008

23 SEP 2008 to 2 OCT 2008

AVHRR (in courtesy of NOAA/CPC)

Summary

- AIRS OLR is a principal component regression with CERES TOA outgoing longwave fluxes.
- Biases and standard deviation error of AIRS OLR is near to zero and within 3 Wm⁻², compared with CERES longwave fluxes in big box.
- There is slight angular dependence, but large difference in twilight region due to over-estimated CERES OLR.

Next Works

- Produce CERES-like IASI OLR.
 - Four times observation per day.
 - Can be used to monitor ERBS using CrIS in future NPOESS.
- Comparison with current AIRS version 5 level 2 OLR products that are calculated from atmospheric status and surface and cloud properties. Use AIRS 3°X3° gridded dataset and CERES FSW dataset.
- Level 3 OLR products: daily and monthly OLR in 0.5° x 0.5° grids derived from AIRS full-resolution radiances?