Retrievals of Multi-layered Cloud Properties

Fu-Lung Chang
National Institute of Aerospace (NIA)

Patrick Minnis
Bing Lin, Louis Nguyen,
Sunny Sun-Mack, Rabindra Palikonda, Patrick Heck, Yan Chen,
Sharon Gibson, Douglas Spangenberg, Qing Trepte, Ping Yang,
and
The CERES Science Team and Technical Support Team

November 14-16, 2007
The 8th CERES-II Science Team Meeting, Victoria, B.C., Canada
OUTLINE

- **Objectives**
 - Improve the retrievals of upper-layer cloud top Tc/Pc/Zc
 - Improve the retrievals of lower-layer cloud top Tc/Pc/Zc
 - Improve CERES cloud phase, optical depth, particle size, liquid/ice water paths, etc.

- **Challenges**
 - Ill-posed problem
 - Individual pixel cloud retrieval approach
 - Retrieval (not a guess) of the lower-layer Tc/Pc/Zc
 - Processing time and data volume

- **Proposed Methodology**
 - Use a pair of 11-µm and 13.3-µm channels to retrieve upper-layer and lower-layer cloud top heights
 - Implement the new 11-/13.3-µm-retrieved cloud top heights into the updated CERES cloud algorithm

- **Results and Validation**
The Proposed “New” 11-/13.3-µm-CO2 retrieval Method

- Use a pair of 11-µm and 13.3-µm channels to retrieve upper-layer and lower-layer cloud top heights
- Implement the new 11-/13.3-µm-retrieved cloud top heights into the updated CERES cloud algorithm

Cloud Retrieval Using Infrared Sounder Data: Error Analysis

BRUCE A. WIELiCKI AND JAMES A. COAKLEY, JR.

National Center for Atmospheric Research, Boulder, CO 80307

(Manuscript received 22 July, 1980, in final form 21 November 1980)

ABSTRACT

An error analysis is presented for cloud-top pressure and cloud-amount retrieval using infrared sounder data. Rms and bias errors are determined for instrument noise (typical of the HIRS-2 instrument on TIROS-N) and for uncertainties in the temperature profiles and water vapor profiles used to estimate clear-sky radiances. Errors are determined for a range of test cloud amounts (0.1–1.0) and cloud-top pressures (920–100 mb). Rms errors vary by an order of magnitude depending on the cloud height and cloud amount within the satellite’s field of view. Large bias errors are found for low-altitude clouds. These bias errors are shown to result from physical constraints placed on retrieved cloud properties, i.e., cloud amounts between 0.0 and 1.0 and cloud-top pressures between the ground and tropopause levels. Middle-level and high-level clouds (above 3–4 km) are retrieved with low bias and rms errors. For instrument noise the 4.3 µm channels provide the smallest errors. For temperature profile and water vapor
A Little Background on the CO2-Multi Retrieval Method

In the paper of Chang and Li (2005):

- MOD06 5-km CO2 cloud top properties
- Retrieve two-layered cloud properties
- MOD06 1-km cloud visible optical depth

Need to do in CERES ed3:

- CERES 1-km CO2 cloud top properties
- Retrieve two-layered cloud properties
- CERES 1-km cloud visible optical depth
When the Love Connection Made at First …
Why Is It So Tough Now?
Small Challenge: Computing Time to Process the MODIS 1-km Data?

CERES 1-km Zc, 11.0/13.3µm

MYD06 5-km Zc, 11.0/13.3/13.6/13.9/14.2µm
Bigger Challenges?

- CERES-MODIS real-time processing
- GOES-12 real-time processing
- SEVIRI real-time processing (on MSG & MTG)
A Pixel-by-pixel Multi-layered Cloud Retrieval Approach
No Coming Back!?
Comparison of the CERES and MYD06 CO2-Cloud-Top Pressures

CERES 1-km Pc
Used 11.0/13.3-µm pairs

MYD06 5-km Pc
Used 11.0/13.3/13.6/13.9/14.2-µm pairs
Comparison of the CERES and MYD06 CO2-Cloud-Top Heights

CERES 1-km Zc
Used 11.0/13.3-µm pairs

MYD06 5-km Zc
Used 11.0/13.3/13.6/13.9/14.2-µm pairs
Current Classifications of the CERES Multi-layered ID

CERES 1-km Multi-layer ID

Definitions of the 12-code Multi-layer ID

1: Low thin cloud (τ < 3.6)
2: Low median cloud (τ = 3.6-23)
3: Low thick cloud (τ > 23)

4: Mid thin cloud (τ < 3.6)
5: Mid median cloud (τ = 3.6-23)
6: Mid thick cloud (τ > 23)

7: Multi-layered mid-top cloud (2-layer retrieval)
8: Multi-layered high-top cloud (2-layer retrieval)
9: Multi-layered cloud (Weak)

10: High-top cirrus cloud (τ < 3.6)
11: High-top cirrocumulus/cirrostratus (τ = 3.6-23)
12: High-top deep convective cloud (τ > 23)
CALIPSO-CloudSat Merged Cloud Vertical Profiles
Cloud-Top Heights from the MYD06 CO2 Method
Cloud-Top Heights from the CERES CO2 Method
Comparison of the CERES and MYD06 CO2-Cloud-Top Heights

CERES 1-km, 11.0/13.3µm

MYD06 5-km, 11.0/13.3/13.6/13.9/14.2µm
The CERES Cloud Top Height and Multilayer ID

CERES 1-km Zc, 11.0/13.3µm

CERES 1-km Multilayer ID
CALIPSO-CloudSat Merged Cloud Vertical Profiles
Cloud-Top Heights from the MYD06 CO2 Method
Cloud-Top Heights from the CERES CO2 Method
Now in CERES ed3:

CERES 1-km CO2 cloud top properties ➔ Retrieve two-layered cloud properties ➔ CERES 1-km new Cloud Algorithm ➔ Retrieve two-layered cloud properties

Now the Proposed CO2-Multilayer Retrieval Algorithm

In CERES ed3?

CERES 1-km CO2 cloud top properties ➔ Retrieve two-layered cloud properties ➔ CERES 1-km cloud visible optical depth