'.
s
—

s otce

Climate Predictions with imperfect
models

(“Hadley Centre QUMP?”)

David Sexton

GERB-CERES workshop, 23-27 October, 2006



1.Introduction
2.Bayesian framework
3.Estimating model imperfection

4.Conclusions



Probabilistic predictions
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Red curve calculated by weighting different parts of parameter
space according to quality of simulation of present-day climate
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What does probability distribution mean

=Could give policy-maker terabytes of model
and observed data each time

*OR a summary statement of how future
climate is consistent with the information
provided

*PProbability distribution is a function of

* Model data

= Observations

* Prior information

* Model imperfections

= Analysis method and assumptions
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Physics/dynamics matter...

»Compare models against several
observational variables — with just one variable
you can simulate climate well for the wrong
reasons

*Will compare with present-day mean climate -
Indirect assessment of key processes for our
climate prediction but adds confidence to our
prediction of one-off event

=\We are not going to assume models are
perfect so using better models has an impact
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Bayesian framework



Bayesian prediction

=Aim is to construct joint probability distribution

p(X, m, , m¢,y,0,d) of all uncertain objects in
problem.

" |nput parameters (X)

= Historical Model output (m,,)

» Model prediction (my)

= True climate (y,,Ys)

= Observations (0)

* Model imperfections (d)

=|t measures how all objects are related in a
probabilistic sense
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Goldstein and Rougier (2004) —

The “Best-input” assumptiog

= Start with a perturbed physics ensemble

»Hypothesise that there is a set of input
parameters, x*, that provide the best climate
model

»But acknowledge that this best model is
imperfect and that there is a discrepancy, d,
compared to real climate

=\We only know the probability that each point in
parameter space is the best-input model. But
that means we need a model at every part of
parameter space...
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Emulators

Emulators are statistical models, trained on ensemble of 300 slab runs,
designed to predict model output at untried parameter combinations
(a t-distribution at each sampled point)

Monte Carlo sampling of parameters combined with an emulator
(combining lots of t-distributions) produces prior pdf (blue line).
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Linking objects in Bayesian framework

Climate model
/ /Discrepancy
True y=f(x*)+8

climate

Emulator
Observations () = yh + e /

Model f()C) = M(.X) + M(X)

0=, (X*)+u, (x*)+¢, +e

Emulator Discrepancy  Obs error
errror
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Comparing models with observations

= Use likelihood function i.e. skill of model is likelihood of
model data given some observations

log L (m) = —c—glog |V | —%(m-o)TV‘l(m-o)

V = obs uncertainty + emulator error + discrepancy
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Constrainingpredictions

=Likelihood alters probability of x*
»Reduce uncertainty about the best input, x*

10

Annual mean 1.5m T (Deg C) Global
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*Most effective if a strong relationship exists
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Discrepancy.on future variable

= Model not perfect so there are processes in
real system not in our model that could alter
model response by an uncertain amount.

»Places extra uncertainty on prediction variable
in form of a variance
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Discrepancy (iii)

* Provides a means of accounting for model
quality

» Models with less imperfection given more weight —
dynamics/physics matter!

* Model improvements can subsequently be tracked

 Constraint of observations gradually improve as
model improves rather than jumping from
“‘unusable” to “usable”.
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Estimating a proxy for discrepancy



Estimating discrepancy

=Four ways | can think of...

= Elicitation

= Observations

» Super-parameterised models

» Ensemble of international climate models
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Estimating discrepancy

= Use multimodel ensemble from AR4 and
CFMIP

=[For each multimodel ensemble member, find
point in QUMP parameter space that is closest
to that member

=There is a distance between climates of this
multimodel ensemble member and this point in
parameter space i.e. effect of processes not
explored by QUMP.

»Pool these distances over all multimodel
ensemble members
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Adding information from other climate models e.g9. =

ummer UK rainfall (]
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Biases in QUMP prediction of multimodel runs

X-axis is difference
between each multimodel
and its ‘best point’ in
QUMP parameter space
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Climate sensitivity
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Conclusions



Properties of the climate prediction (i)

*MULTIVARIATE

» Predicts joint distributions

= Predictions of individual variables consistent with
marginal distributions from joint analysis

= Different prediction variables can be constrained
by different observations

= Can use lots of observations to constrain prediction

= Only new independent observations impact on
probability distribution
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Properties of the climate prediction (ii)

"PRIOR

»Don’t let predictions be dependent on sampling
strategy

" |nstead predictions are representative of whole
parameter space given some expert-chosen
distribution

= Allow a sensitivity analysis so it is easy to try out
different expert’s distributions
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Properties of the climate prediction (iii)

*MODEL IMPERFECTIONS

* Acknowledge that our models are not perfect
therefore we have to be careful about comparing
modelled and observed data

» Don’t let poorly modelled variables over-constrain
PDF

= Allow for a modelling uncertainty additional to one
explored by perturbing parameters:

= Observable model variables
= Forecast variables
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Reducing uncertainty

*|mprove observational uncertainties
*Improve model i.e. reduce discrepancy
*Run larger ensembles

=Use more observational constraints
independent of the ones used already
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Observational uncertainties

»Please keep producing better data sets that
allow the model to be evaluated in more detail

»Require observational errors in an easily-
accessible format

*Any advice on errors for ERBE, CERES, or
ISCCP most welcome.

= Any advice most welcome on new data sets
and whether they need new model
diagnostics.
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