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Trend Detection

• “Finding a change which is large relative to
natural variability.”

• Both the magnitude of variability and the
memory hinder our ability to detect trends.

• Finding a change which is large relative to
natural variability and instrument
uncertainty.







Brief and Incomplete Data
Description

• Data were received from Laura Hinkelman on
March 5, 2005 and were labeled as follows:

• (1)   "Time (Year)"

• (2)   "SRB SWDW Mean Selected (W m^-^2)"

• (3)   "SRB SWDW Mean Global (W m^-^2)"

• (4)   "Deseasonalized Selected (W m^-^2)"

• (5)   "Deseasonalized Global (W m^-^2)“

• Plots of radiation versus time follow.
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Note:  Very stable looking time series.  Perhaps more variability in the
Peaks than the troughs?  
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Note:  Possible long-term, multi-year (possibly decadal) variability.  This will be hard to
account for statistically unless we can link it to  Something else (QBO/solar/NAO).



Analysis of internal structure

• Two types of plots follow:
– ACF

• Shows correlation of a month with one month prior; two
months prior, etc.

• Yule-Walker algorithm is used
– PACF

• Shows correlation of a month with one month prior; two
months prior, etc.  For two months and greater, the derived
effect of the prior months is already removed.

• Levinson-Durbin algorithm is used

• Time steps are one month
• Both sets of plots use the deseasonalized data

provided.
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Autocorrelation is always 1 for lag 0.  This sets the scale.  The horizontal dotted lines 
represent 2 sigma uncertainty on the fit, so the lag 1 term is barely significant.  The 
lag 1 term is .1526; the lag 2 term is .1169; the lag 3 term is .0376.  
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This Partial AC plot remove has the same lag 1 plot as the prior plot, but removes the expected
Correlation for lags 2+, based on what we know about the earlier lags.  Again, lag 1 is 
Small and only barely significant at the 2 sigma level.  The rest of the lags are not
Statistically significant.  This implies an AR(1) is a sufficient model unless proven 
Otherwise.
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Note:  Interesting 1994 event (Pinatubo delayed effect?)
Note:  Annual peaks and annual troughs seem related—very interesting!
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Very clear decadal variability.  This cannot be accounted for by a monthly model.
If there is any way to link this variability, that would be great.  Without understanding
The long-term movement, trends and error bars will be misleading.
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Again, autocorrelation is always 1 for lag 0.  This sets the scale.  The horizontal dotted lines
represent 2 sigma uncertainty on the fit. The lag 1 term is .6022; the lag 2 term is .3964;
the lag 3 term is .2467.  This signature, with many statistically significant terms, can almost
Be expected because the lag 1 term is so large.  A large correlation between one month and
Prior (0.6) almost dictates that there is a reasonable correlation between one month and two
months prior.
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Weatherhead Mon Mar 20 11:12:57 MST 2006This Partial AC plot remove has the same lag 1 plot as the prior plot, but removes the expected
Correlation for lags 2+, based on what we know about the earlier lags.  Here, lag 1 is 
large and clearly significant at the 2 sigma level.  The rest of the lags are not
Statistically significant.  This implies an AR(1) is a sufficient model unless proven 
Otherwise.



How many single stations do we
need?

• Spatial coherence means that averaging
many different locations does not always
reduce error bars significantly.

• Spatial coherence can be estimated from
past data.



MSU Channel 4
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MSU Channel 4
Correlation with lat=0 and long=0
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Number of Years needed to
detect a trend

• Can we distinguish between cases where
there are no trends and cases where we
haven’t monitored long enough?

• What can we improve in order to detect
trends?
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GSFC Predictions with SBUV Lowess Residuals
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GSFC 2d Predictions with SBUV Residuals of Total Col. Ozone (d.u.) 40N



Number of Years needed to
detect a trend

• Approximately:

n={  (2 * σn / |ωo|  )  sqrt (1+ φ)/(1- φ)  }2/3

– Assuming that detection is declared at the 95% confidence level
– This estimate allows for 50% likelihood of detection

• What can we improve in order to detect trends?
– Where we monitor
– How frequently
– How accurately
– How well we understand the data
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•One point can make a
large difference on
seven year trends.

•We can see it
visually.

•This is reflected
statistically.



“Super Torque”
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The power of a point to influence a trend line
is proportional to:

the temporal distance from the center
                        x
the square of the distance of the point from
the trend line.



Possible Questions?
Are the interventions normally distributed?  Lack of normality could

imply something very clear about positive or negative
feedbacks—perhaps this will be most interesting when looking at
regions of the world.

• Is the time correlation derived here independent of season?  Is it
possible that some months are more interconnected than others?
This would be a good, independent way to help identify regimes.

• Are there some times of year better for detecting trends?  Are there
some places better for detecting trends?

• What explanatory variables can be pulled in to help explain long-
term as well as short term variability?  Once these variables have
been brought in, what does that do to the internal structure of the
data?  Are they still AR(1) or are sub-exponential or super-
exponential signals observed.  Again, this could imply something
about feedbacks on the station level or on the global level.

• Can the differences in variability be explained by the fact that one
is an average over more areas, or is there a non-linear relationship
which could imply tele-connections.

• How do the endpoints affect our trend results?



Summary Thoughts

The two time series have very different
characteristics as can be seen by looking at
the deseasonalized time series.  The global
time series has a more clear, decadal time
scale associated with it.

• This initial analysis implies that an AR(1) is
an appropriate model to use for both time
series.


