Ozone Products from the NCEP GFS

Craig S. Long
AJ Miller, SK Yang, S Zhou, J Wild, T Beck
NOAA/NWS/NCEP/Climate Prediction Center
L Flynn, S Kondragunta
NOAA/NESDIS/STAR
M Irdell, S Moorthi, J Derber, R Treadon
NOAA/NWS/NCEP/EMC

CERES Science Team Meeting

May 2006
Outline

• Ozone in the NCEP/GFS and Model Development
 – Past
 – Present
 – Future

• Comparisons with SMOBA, OMI
 – Satellite Monitoring Ozone Blended Analysis
 • Blending SBUV/2 and HIRS (TOVS, TOAST)
 – Analyses & zonal mean diff

• Quality of forecasts
 – RMS errors (absolute and percent)
Past

- Prior to June 1998 ozone was prescribed climatology
- Model was T126/L28
 - 105 km horz res
 - 3 layers above 100 hPa
- SBUV/2 total & profile ozone began being assimilated in June 1998.
 - Model was T170/L42
 - 80 km horz res
 - 10 levels above 100 hPa
 - More ozone layers than model layers
- In 2002 model upgraded to T254/L64
 - 55 km horz res
 - 21 levels above 100 hPa
 - Able to utilize SBUV/2 vertical resolution
 - Not all SBUV/2 layers assimilated
Present

• Present model is T382/L64
 – 35 km horz res
 – Extended 64 levels for all 14 days
 – Improves stratosphere fcsts beyond day 5
• GFS output resolution
 – standard 1°x1°
 – Available at 0.5°x 0.5°
 – 3 hour forecast output out to 14 days
• Currently assimilating both NOAA-16 and NOAA-17 SBUV/2 ozone products
• Ozone is assimilated for
 – LW and SW radiation
 – Extraction of Temp info from ozone sensitive HIRS channel
• Use as boundary conditions for NCEP AQ model
• Ozone forecasts used in UV Index forecasts
Present (cont.)

- GFS has ozone chemistry
 - P+L terms $f(\text{lat, time, pressure})$
 - Currently out of balance, GFS looses ozone with time
- Brewer-Dobson circulation also suspect for being too aggressive in transporting ozone from tropics to poles.
- No ozone observations in polar night.
 - SMOBA uses TOAST in polar night region
- Leave only dynamic transport
- Model does not have heterogeneous ozone destruction chemistry.
Future

• New ozone chemistry parameterization
 – Tuned to model

• Additional ozone sources
 – Aura/OMI total and profile ozone (scans)
 – Aura/HIRDLS ozone profiles
 – MetOp GOME-2
 – AIRS ozone products as possible source of polar night obs
 – NPP and NPOESS OMPS
 • Replaces SBUV/2
 • Downward scanning and limb profiler

• Additional obs affecting ozone
 – Water vapor
 – Methane
Comparisons between GFS, SMOBA, and OMI

Total Ozone

• Qualitative
 – Differing resolutions
 – Differing analyses
 – Differing inputs

• Quantitative
 – Zonal mean agreement (differences)
Climatological range of SP April observations
Quality of GFS Total Ozone Forecasts

• Qualitative
 – Comparison of 5 day forecast field with validating analysis

• Quantitative
 – Zonal mean RMS errors for 1, 2, and 3 day forecasts
Analyses For 00Z April 26

5 Day Forecasts Valid at 00Z April 26

CERES Science Team Meeting

May 2006
CERES Science Team Meeting

May 2006
Ozone Profile Information

- More, higher vertical resolution observations will soon be tested in parallel
 - OMI profile scanner
 - HIRDLS
 - GOME-2
- Future profile information from
 - OMPS (NPP, NPOESS)
Vertical Extent of Various Ozone Data Sources

CERES Science Team Meeting

May 2006
Summary

• NCEP/GFS ozone products provide:
 – High resolution data set.
 – Forecasts with small rms errors out to 5 days.
 – Potentially better information in polar night.
 – Will provide highly resolved vertical profiles with addition of OMI, HIRDLS, and OMPS profile data.
 – Could be the backup in the rare event of missing SMOBA obs
FINI