Far-Infrared Spectroscopy of the Troposphere

FIRST

Flight Results & Preliminary Comparisons with CERES, AIRS, and MODIS

Marty Mlynczak, NASA Langley Research Center
Dave Johnson, NASA Langley Research Center
Harri Latvakoski, Utah State University Space Dynamics Laboratory
Ken Jucks, Harvard Smithsonian Center for Astrophysics
David Kratz, NASA Langley Research Center
Xu Liu, NASA Langley Research Center
Ferenc Miskolczi, NASA Langley Research Center
Gail Bingham, Utah State University Space Dynamics Laboratory

CERES Science Team Meeting – November 2005
FIRST – Overview

- Program developed under NASA Instrument Incubator Program (IIP)
- Develop technology necessary for routine measurement from space of the far-infrared spectrum 15 to 100 µm
- Many compelling science issues (greenhouse effect; cirrus etc.)
- FIRST is a Michelson FTS @ 0.625 cm\(^{-1}\) spectral resolution
- Global coverage requirement
 - Necessitates high throughput interferometer
 - 100 detector array \(\diamond\) 0.47 cm\(^2\) sr throughput
- One focal plane requirement
 - Necessitates broad bandpass beamsplitter (10 to 100 µm)
- IIP requires technology to be demonstrated in a relevant environment
- FIRST successfully demonstrated June 7 2005 on high altitude balloon from Ft. Sumner, NM

Completed on schedule and within original proposed budget
FIRST on the Flight Line June 7 2005
FIRST Flight Specifics

- Launched on 11 M cu ft balloon June 7 2005
- Float altitude of 27 km
- Recorded 5.5 hours of data
- 1.2 km footprint of entire FPA; 0.2 km footprint per detector
- 15,000 interferograms (total) recorded on 10 detectors
- Overflight of AQUA at 2:25 pm local time – AIRS, CERES, MODIS
- Essentially coincident footprints FIRST, AQUA instruments
- FIRST met or exceeded technology development goals
 - Optical throughput demonstrated by spectra from center and edge of focal plane detectors
 - Exceeded spectral bandpass – 20 to 1600 cm\(^{-1}\) demonstrated vs. 100 to 1000 cm\(^{-1}\) required
- FIRST, AIRS, CERES, MODIS comparisons in window imply excellent calibration (≈1 K agreement in skin temperature)

FIRST records complete thermal emission spectrum of the Earth at high spatial and spectral resolution
FIRST “First Light” Spectrum

7-June-2005 Atmosphere

Preliminary Calibration
FIRST, AIRS, MODIS and CERES Window Radiance Comparisons

- Four AIRS footprints very close to FIRST
- Several CERES Window channel footprints close to FIRST
- MODIS footprint nearly coincident with FIRST

- FIRST Radiance at 900 cm\(^{-1}\) is 0.15 W m\(^{-2}\) sr cm\(^{-1}\)
 - Corresponds to a skin temperature of 318 K if emissivity = 1.0
 - Air temperature at Ft. Sumner ~ 90 F or 305 K
 - IR emissivity from AIRS \diamond Skin temp for FIRST is 320 K

- AIRS skin temperature closest to FIRST is 319 K

- MODIS skin temperature in pixel nearly coincident with FIRST is 322 K

- CERES Window Channel (844 to 1227 cm\(^{-1}\))
 - Measured radiance is 41.75 W m\(^{2}\) sr\(^{-1}\) closest to FIRST
 - Computed radiance using ABQ sonde, 318 K skin Temp is 41.83 W m\(^{2}\) sr\(^{-1}\)
 - Computed radiance for 297 K skin temp is 30.76 W

Conclude that within 1 -2 K CERES, AIRS, and MODIS support FIRST skin temperature, and hence, absolute calibration of the FIRST instrument
FIRST Spectra
Comparisons with L-B-L using AIRS Retrievals

L-b-L does not yet include FIRST Instrument Response Functions
FIRST Spectra Compared with L-b-L Simulation
Demonstration of FIRST Recovery of Spectral Structure

Note: FIRST, LbL spectra offset by 0.05 radiance units
FIRST Spectra
Comparisons with L-B-L using AIRS Retrievals

Preliminary calibration
Radiance Comparison

First graph:
- X-axis: Frequency (cm⁻¹)
- Y-axis: Radiance (mW/m²sr/cm⁻¹)
- Blue line: FIRST Spectrum
- Red line: Modeled Spectrum

Second graph:
- X-axis: Frequency (cm⁻¹)
- Y-axis: Difference (mW/m²sr/cm⁻¹)

L-b-L does not yet include FIRST Instrument Response Functions
FIRST – Status and Summary

- FIRST successfully completed technology demonstration flight 6/2005
 - Met or exceeded technology goals

- Preliminary calibration applied here from flight blackbody

- Measured entire thermal emission spectrum on one focal plane with one instrument

- Agreement in window with CERES, AIRS, and MODIS is excellent

- Fidelity of measured far-IR spectra with L-b-L codes is outstanding

- Continuing to improve calibration:
 - Absolute cal. using laboratory and flight blackbodies
 - Improved phase corrections

- Anticipate deployment in future campaigns and science opportunities
FIRST Lands Safely after a Successful Flight