

AIRS – CERES Window Radiance Comparison

AIRS-to-CERES Radiance Conversion

Ferenc Miskolczi - AS & M, Inc., Hampton, VA

Marty Mlynczak - NASA Langley Research Center

Far-Infrared Properties of Earth's Radiation Budget

Concept For Isolating the Far-IR with AQUA

AIRS and CERES SRFs

Continuous window channel domain (1277 channels)

Interpolated SRFs for the un-covered regions

AIRS-V1 new SRFs in the window region

AIRS simulations (HARTCODE, ECMWF profile set)

6

Limb darkening

7

Selected AIRS granules from two different orbits

Typical flagged and un-flagged noisy channels

Noisy channels and spectral gaps (331 channels)

Initial spectra, granule 227, scanline: 135 (100) (100) (100) (100) (100) (120) (1300) (100) (120) (1300) (100) (120) (1300) (100) (100) (120) (1300) (10) (1

Solution for the 331 bad and missing channels

1 - From the theoretical reference spectra separate the bad and good channels, (\underline{R}_B and \underline{R}_G), and solve the next over-determined least-square problem for a C regression matrix :

$$|| \underline{R}_B - \underline{C} \underline{R}_G ||^2_{min}$$

2 - Apply the C matrix to the measured good channel radiances $r_{\rm G}$:

 $\underline{r}_B = C \underline{r}_G$

Initial and final spectra, granule 106 (50 OEFs)

Viewing angle correction: R=R_G*C'(log(cos(_))), where is the corrected regression matrix.

Final spectra, granules 106 and 227 (same OEFs)

Equivalent widths and filter transmissions

CERES filters f1, f2, f4

Effective wavenumbers

Filtered and unfiltered radiances

Viewing angle dependence

17

Filtered radiance conversion

3rd order polynomial, coefficients are linear functions of log(cos(_))

18

AIRS granule 106

Test data for AIRS-CERES windows radiance comparison - AIRS 922.0 cm⁻¹ channel radiance Selected 4°x3° high contrast area - 450 footprints mean: 40.2 minimum: 20.3 maximum: 124.0 std: 30 - [mW/(cm² sr cm⁻¹)]

CERES has ~45% more footprints

Scan patterns and footprints

Footprint selection strategy I.

Footprint selection strategy II.

AIRS granule 106 – radiance and scan structures

Homogeneous warm surface

Mean: 85.1 *mW/(cm²* sr cm⁻¹), Std: 2.611 %

Footprint selection strategy I.

D(km)	W (deg)	R _{AIRS}	R _{CERES}	CR	CD	CW	NA	NC	Ν
7.70012	7 -0.2070775	23.29279	23.4384	0.9267924	0.1435197	0.09577701	321	452	321
7.824622	2 -0.2095599	23.26582	23.4229	0.9205361	0.04740091	0.05823755	321	452	452
A ³³		8 9 9 .	• • •	0	33	PPARADO	29 3	~	C
/ 1	389997	790 J	9 9 00			000000000			
	110000		Q 89 Y	5 •				<mark>℃??</mark>	•
32.5		0 0 6 6 6		8 8	32.5		CONTROL		8
0_11	600000	A 80		9 •			AAD		
	8880		φ	•		RADOO		0000-	
	8800	PTP					JJJJJJJJJJJJJ		0
32	BETTLE			Q -	32	000000			P
ŋ			<u>3</u> 88.	د	<u>ה</u>			မီးနီးနှင့်စ	
de		<u>6</u> 9 8 8 6	3 R C	א <mark>ס</mark> (o A A	0
<u>0</u> 21 F	600000 C	.		0	21 5 CO		RADO		P
	000000			9		ANUCOCO			
ati	00000	Pl • 9	9 1 6 2						\$
	20091299	6 6 6		<u> </u>			~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	2009	5
31		000000	880		31				
		36400	A 8 0	00	666				C
	699999	0 <mark>0 % , </mark>		€ €	A CO		NUT COL		
	069880			२ 🦹					2
30.5			37 9 9	80	30.5	A CONTRACT	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~)(1
	\$ CO 00000000000000000000000000000000000	179 0 8		%	C. C				
	111900						opper t	3	
30	DEPART C	AQ.	🚽 👧 🖸		30	- AVARA		0000 0	
	42 43 _.	. 44	45	46	42	43	44	45	46
	Lo	ngitude, d	leg.		Longitude, deg.				

Footprint selection strategy II.

1°x1° resolution, 18 AIRS footprints

Summary - total of 297 1°x1° cells in 3 regions

AIRS and CERES filtered window radiance comparison, Feb. 20, 2004

Top: mean AIRS, CERES, std. AIRS, CERES; Bottom: footprints/cell, bias %, Rstd. %, correlation

CONCLUSIONS

- 1. The spectral correction and gap filling method works very well in the window region for the AIRS data.
- 2. The relationship between the convolved AIRS spectra and the filtered CERES window radiation can be evaluated by a simple polynomial regression scheme which incorporates the limb darkening.
- **3.** Comparisons over selected test areas show that the method is robust.
- 4. A correction matrix computed for the full AIRS spectral range and the relationships between the un-filtered radiances are necessary for obtaining FAR IR estimates from AQUA.

SLIDE LIST

- **1** AIRS-CERES window radiance comparison title page
- 2 Concept of FAR IR estimates from AQUA
- **3** AIRS and CERES SRFs
- 4 Continuous window channel domain (1277 channels)
- **5** 232 new interpolated window SRFs for the un-covered regions
- **6** AIRS radiance simulations (HARTCODE, ECMWF profile set)
- 7 Limb darkening
- 8 Selected granules for the narrow to broad band conversion
- 9 Typical flagged and un-flagged noisy channels
- **10** Noisy channels and spectral gaps (99+232=331 channels)
- **11** Two-step solution of the spectral cleaning
- **12** Sample scan line
- **13** Sample scan lines from two different orbits
- **14 CERES filters in the window channel**
- **15 Effective wavenumbers**
- **16** Filtered and unfiltered CERES and AIRS radiances
- **17** Limb darkening of AIRS converted radiances
- **18** Radiance conversion based on simulated spectra
- **19 Test area worst case**
- **20** AIRS and CERES scan patterns
- **21** Footprint selection preferences
- 22 Constraint on footprint distance result in equal footprint weight
- 23 Homogeneous warm 4°x3° area in AIRS granule 106
- 24 Footprint selection preferences
- **25** Footprint maximum distance < 4 km
- **26** Increase resolution to 1°x1°
- 27 Summary of results for 1°x1° resolution
- 28 Conclusions