Surface, Atmospheric, TOA radiation budgets over ARM SGP and TWP sites

Xiquan Dong and Baike Xi, U. of North Dakota
Bruce Wielicki and YongXiang Hu, NASA Langley

Special thanks to
Chuck Long and Tom Ackerman\ Flux data and suggestions
Sally Benson and Jay Mace\ ARM Cloud heights
Chuck Pavloski and Eugene Clothiaux\ Monte Carlo simulations
Fred Rose and Tom Charlock \ Fu-Liou code
Outline

1) SGP results
2) TWP results
3) Comparison with Model calculations
4) Error analysis
Data

Surface data
Cloud-base and -top heights from ARM lidar/radar measurements, SW fluxes from Chuck Long’s best estimate flux VAP.

CERES data on TERRA
TOA albedo, effective cloud height, optical depth.

Samples and Time periods:
\ARM SGP:
30 deep cumulus clouds from March 2000 to May 2003.

\ARM TWP (Nauru:0.52° S, 166.92° E; Manus:2.06° S, 147.43° E)

\NO AUQA data, and NO TWP surface data in 2003.
Averaging/calculating methods

Surface data were averaged over a 1-hour period centered at the time of the *Terra* overpass.

CERES cloud and radiation properties were averaged in a $1^\circ \times 1^\circ$ box centered on the ARM surface sites.

$$A_{col} = 1 - R_{TOA} - T_{sfc}$$
TOA/SFC/Atmosphere Radiation Budgets over the ARM SGP Site

(a) Optical depth
Mean = 51.7, Std = 23

(b) TOA Albedo
Mean = 0.62, Std = 0.054

(c) Surface Transmission
Mean = 0.16, Std = 0.077

(d) Atmospheric Absorp
Mean = 0.22, Std = 0.06
Comparison between observations and model calculations

Model calculated R_{TOA} is 7% higher and A_{col} is 7% lower than data.
Cloud top

Model calculations
Plane parallel

Observations with photons
Leak at the sides of Cu

$A_{\text{col}}=20$ photons
$A_{\text{col}}=25$ photons

Cloud base

When Cu height=10 km, size=100 km, the side leaking is \sim5%
What are quantitative relationships between R_{TOA}, T_{sfc}, and A_{col} with cloud optical depth?
When ΔT_{sfc} increases 0.1, ΔR_{TOA} decreases 0.0435
Why they are so small?
Why cloud absorptions in the cases 5 and 6 are so small?
Cases 5 and 6 MODIS images
Comparison between observations and Fu/Liou calculations

(a) Optical depth

(b) TOA Albedo

(c) Surface Transmission

(d) Atmospheric Absorp

Sample number
Their relationships are very similar to their counterparts at SGP.
When ΔT_{sfc} increases 0.1, ΔR_{TOA} decreases 0.0201
Error analysis

1) Water vapor below cloud base and above cloud top
2) Surface albedo impact
3) Precipitation:
 Most of cases at SGP without precipitation, but it is opposite at TWP sites.
Almost NO water vapor above cloud top, and cloud base is close to ground.
When ΔR_{sfc} increases 20%, ΔT_{sfc} increases 2.7%
Conclusions

1) Deep cumulus clouds are selected at the ARM SGP and TWP sites with averaged cloud-base height ~1 km, top height ~ 10 km.

2) Their averaged TOA albedo is ~0.6, most are 0.5 \(0.7 \)
 - Surface transmission is ~0.17, most are 0.05 \(0.3 \)
 - Atmospheric absorption is ~0.23, most are 0.1 \(0.3 \)

3) At SGP, Model \(R_{TOA} \) is 7% higher, \(A_{col} \) is 7% lower than data
 At TWP, Model \(R_{TOA} \) is 7% higher, \(A_{col} \) is 3% lower than data

4) The negative correlation between TOA albedo and surface transmission is stronger at SGP than at TWP

5) Error analysis shows:
 - Water vapor contributes little to SW absorption in this study
 - Surface albedo impact is almost negligible in this study
<table>
<thead>
<tr>
<th></th>
<th>Feb. 27, Abt</th>
<th>2000 Abs(Wm(^{-2}))</th>
<th>March Abt</th>
<th>20, 2000 Abs(Wm(^{-2}))</th>
</tr>
</thead>
<tbody>
<tr>
<td>TSBR tower</td>
<td>0.134</td>
<td>116</td>
<td>0.132</td>
<td>136</td>
</tr>
<tr>
<td>TSBR aircraft</td>
<td>0.121</td>
<td>105</td>
<td>0.127</td>
<td>131</td>
</tr>
<tr>
<td>CM22 tower</td>
<td>0.123</td>
<td>106</td>
<td>0.137</td>
<td>139</td>
</tr>
<tr>
<td>CM22 aircraft</td>
<td>0.111</td>
<td>96</td>
<td>0.131</td>
<td>133</td>
</tr>
<tr>
<td>CM21 tower</td>
<td>0.103</td>
<td>88</td>
<td>0.121</td>
<td>123</td>
</tr>
<tr>
<td>RAPRAD mineral</td>
<td>0.116</td>
<td>101</td>
<td>0.125</td>
<td>129</td>
</tr>
<tr>
<td>RAPRAD cont.</td>
<td>0.114</td>
<td>99</td>
<td>0.123</td>
<td>126</td>
</tr>
<tr>
<td>SBDART mineral</td>
<td>0.124</td>
<td>108</td>
<td>0.131</td>
<td>135</td>
</tr>
<tr>
<td>SBDART cont.</td>
<td>0.121</td>
<td>105</td>
<td>0.128</td>
<td>132</td>
</tr>
</tbody>
</table>

Ackerman et al. 2003, JGR
Table 3: Cloudy-sky measured and modeled values of Absorptance (Abt) and Absorption (Abs) [ARESE II]

<table>
<thead>
<tr>
<th></th>
<th>March Abt</th>
<th>03 Abs</th>
<th>March Abt</th>
<th>21 Abs</th>
<th>March Abt</th>
<th>29 Abs</th>
</tr>
</thead>
<tbody>
<tr>
<td>TSBR tower</td>
<td>0.205</td>
<td>195</td>
<td>0.206</td>
<td>211</td>
<td>0.217</td>
<td>225</td>
</tr>
<tr>
<td>TSBR aircraft</td>
<td>0.211</td>
<td>200</td>
<td>0.207</td>
<td>211</td>
<td>0.230</td>
<td>238</td>
</tr>
<tr>
<td>CM22 tower</td>
<td>0.178</td>
<td>167</td>
<td>0.208</td>
<td>211</td>
<td>0.214</td>
<td>220</td>
</tr>
<tr>
<td>CM22 aircraft</td>
<td>0.184</td>
<td>172</td>
<td>0.212</td>
<td>216</td>
<td>0.231</td>
<td>237</td>
</tr>
<tr>
<td>CM21 tower</td>
<td>0.178</td>
<td>166</td>
<td>0.200</td>
<td>203</td>
<td>0.191</td>
<td>194</td>
</tr>
<tr>
<td>RAPRAD</td>
<td>0.182</td>
<td>174</td>
<td>0.203</td>
<td>209</td>
<td>0.197</td>
<td>207</td>
</tr>
<tr>
<td>SBDART</td>
<td>0.187</td>
<td>179</td>
<td>0.202</td>
<td>207</td>
<td>0.197</td>
<td>207</td>
</tr>
</tbody>
</table>

Acknowledgment: Ackerman et al. 2003, JGR
Thanks for your attention!

This is our future work!

SGP

TOA/SFC/Atmosphere Radiation Budgets over the ARM SGP Site

(a) Mean = 51.7, Std = 23

(b) Mean = 0.62, Std = 0.054

(c) Mean = 0.16, Std = 0.077

(d) Mean = 0.22, Std = 0.06

Sample number

TWP

TOA/SFC/Atmosphere Radiation Budgets over the ARM TWP Sites

(a) Mean = 40, Std = 22

(b) Mean = 0.57, Std = 0.075

(c) Mean = 0.18, Std = 0.1

(d) Mean = 0.25, Std = 0.11

Sample number
Comparison between observations and model calculations

Comparison between observations and Fu/Liou calculations

(a) SGP

(b) TWP

Sample number

Optical depth

TOA Albedo

Surface Transmissivity

Atmospheric Absorp.
Relationship of R_{TOA}, T_{sc} and A_{col} with cloud optical depth

SGP

TOA Albedo

$Y = 0.089 \ln(X) + 0.285$

$\text{Corr} = 0.82$

Surface Transmission

$Y = -0.114 \ln(X) + 0.59$

$\text{Corr} = 0.72$

Atmospheric Absorption

$Y = 0.0006X + 0.189$

$\text{Corr} = 0.24$

TWP

TOA Albedo

$Y = 0.1204 \ln(X) + 0.1412$

$\text{Corr} = 0.90$

Surface Transmission

$Y = -0.0913 \ln(X) + 0.5023$

$\text{Corr} = 0.51$

Atmospheric Absorption

$Y = -0.0009X + 0.2907$

$\text{Corr} = 0.19$
When ΔT_{sfc} increases 0.1, ΔR_{TOA} decreases 0.0435

When ΔT_{sfc} increases 0.1, ΔR_{TOA} decreases 0.0201
Monte Carlo Simulations

Given values: \(\text{Tau}=64 \), \(\text{Cloud thickness}=10 \text{ km} \),
\(\text{Solar zenith angle}=5^\circ \), run Monte Carlo simulations at \(\text{wavelength}=0.67 \ \mu\text{m} \)

Results:
When \(\text{Cu size is 10 km} \), the side photon leaking is \(\sim 25\% \)
When \(\text{Cu size is 100 km} \), the side photon leaking is estimated around 5\%.