ERBE Radiative Fluxes and ISCCP Cloud Amounts/Heights

R. Cess, W. Lin, M. Zhang & M. Sun
Marine Sciences Research Center
SUNY at Stony Brook

29th CERES Science Team Meeting
Hampton, VA
November 17-18, 2003

Data
ERBE: Gridded data (2.5°×2.5°) consisting of DJF means averaged over five years (1985-1989).

ISCCP: The same as the above for cloud amount and cloud-top pressure, plus every-three-hour data for January 1988.
\[N = -\frac{\text{SW CRF}}{\text{LW CRF}} \]

Western region

Southeastern region
\[N = -\frac{\text{SW CRF}}{\text{LW CRF}} \]

Western region
- Mean = 0.787
- CV = 6.1%

Southeastern region
- Mean = 0.526
- CV = 16.1%

ERBE data
ISCCP cloud-top pressure
Western Region

Mean = 390
SD = 53

January 1988
Monthly mean
Mean = 386
SD = 72

January 1988
Every three hours
Mean = 383
SD = 164
Western Region

\[N = - \frac{\text{SW CRF}}{\text{LW CRF}} \]

[Graph showing scatter plot with lines for 300 mb, 200 mb, and 100 mb levels, with data points and two lines labeled CCM3 CRM and ERBE.]
Two Interesting Studies

Hartmann, Moy and Fu [2001]: Implemented every three hourly ISCCP cloud-top pressures, plus other input data for the tropical western Pacific, into a radiative transfer model and obtained TOA SW and LW radiative fluxes that were in good agreement with ERBE.

Taotao Qian [2003]: Implemented monthly-mean HIRS cloud-top pressures, plus other input data for the tropical western Pacific, into a radiative transfer model and obtained TOA SW and LW radiative fluxes that were in good agreement with ERBE.