Theoretical Simulations of ADMs based on Sigmoidal Fits

Lin H. Chambers and Norman G. Loeb
Radiation and Aerosols Branch
NASA Langley Research Center

CERES Science Team Meeting
September 17-19, 2002
Approach

• Use existing theoretical calculations for realistic cloud scenes from Landsat to assess the use of the proposed parameter
Concept

From SHDOM have:
- computed radiances
- computed flux

1. \(F^{\text{SH}}(\theta_0) \)
2. \(I^{\text{SH}}(\theta, \phi; \theta_0) \)

From fit:
- \(F^F = \Sigma I^F \)
- \(\text{ADMF}^F = \pi I^F/F^F \)

Predict:
- \(F^P = \pi I^{\text{SH}}/\text{ADMF}^F \)
\[\phi = 0^\circ \quad \Theta_0 = 75^\circ \]
Status

• F^{SH} and F^F agree quite well
• Increasing RMS difference for F^P with θ_0
• Sigmoidal fit breaks down at some angles
 – No correlation to typical cloud props
 – Suggests great sensitivity to cloud geometry
 – Needs further study