Homogenisation of GERB and CERES fluxes.

S. Dewitte
Royal Meteorological Institute of Belgium

CERES meeting, Newport News, May 2001
Overview

0. Context: Climate Monitoring SAF
1. Homogenisation of GERB and CERES fluxes
2. Nature of expected errors
3. General homogenisation methodology
4. Radiance homogenisation
5. Flux homogenisation
6. Needed data
7. Conclusions

CERES meeting, Newport News, May 2001
Context: Climate Monitoring SAF

- Sattelite Aplication Facilities (SAF’s): project initiated by EUropean METeosat SATellite (EUMETSAT) organisation for better exploitation of (future) satellite data
- Climate Monitoring SAF: aims to derive satellite products with good quality and which are consistent in time
Role of RMIB in CM SAF

- Derive radiative fluxes at top of atmosphere
- Input sources for incoming solar irradiance: solar irradiance measurements
- Input sources for reflected solar irradiance and emitted thermal irradiance: GERB and CERES
Flowchart for incoming solar radiance

1. Continuous TSI measurements
2. Reference TSI measurements
3. TSI homogenisation
4. Daily mean SARR solar irradiance at 1 A.U.
5. Three hours mean incident solar flux over grid boxes
6. Averaging

Daily/monthly and monthly diurnal
Flowchart for reflected solar and emitted thermal irradiance

- High resolution 15' GERB fluxes
- Collocation
- Database of collocated flux pairs
- Statistical analysis
- Objective characterisation of systematic errors
- A posteriori correction
- A posteriori correction
- Three hours mean calculation and merging
- Averaging
- Homogenised daily/monthly and monthly diurnal

Feedback for a priori correction
Homogenisation of GERB and CERES fluxes

- Homogenisation = merge datasets without introducing discontinuities
 - statistical analysis: estimation of systematic differences in function of known parameters
 - a posteriori correction: removal of systematic differences
Nature of expected errors

- **Satellite measurement -> Unfiltered radiance**
 - processing: calibration, unfiltering
 - expected errors depend on scene type

- **Unfiltered radiance -> Flux**
 - processing: angular modelling
 - expected errors depend on scene type and viewing angles
To homogenise the data from two sources, a comparison and the choice of a reference is needed.

\[
\text{Difference} = \text{source 1} - \text{source 2} \\
= (\text{source 1} - \text{reference}) - (\text{reference} - \text{source 2}) \\
= \text{error 1} - \text{error 2}
\]
3.2 Definition of comparison cases and bins

- Comparison/homogenisation can be done independently for number of cases c:
 - radiances, thermal flux: 3 surface scene types ocean, land, desert
 - solar flux: 3 surface scene types x solar zenith angle intervals
Comparison method = regression

- e.g. flux comparison

\[\text{F}_{\text{CERES}} = A + B \text{F}_{\text{GERB}} \]

- perfect agreement \(\leftrightarrow \) \(A=0, B=1 \)

- cloud classes are treated implicitly
 - solar: low values \(\leftrightarrow \) clear sky
 high values \(\leftrightarrow \) cloudy sky
 - thermal: low values \(\leftrightarrow \) cloudy sky
 high values \(\leftrightarrow \) clear sky
For every comparison case c data has to be compared for different angular bins b:

- radiances: viewing zenith angle intervals
- fluxes: viewing zenith and relative azimuth angle intervals
Radial Radiance homogenisation

Use co-angular radiances only

Reference = (GERB + CERES)/2

$\text{error}_{\text{GERB}} = (\text{GERB} - \text{CERES})/2$

$\text{error}_{\text{CERES}} = (\text{CERES} - \text{GERB})/2$
2 Practical implementation

- regress CERES versus GERB radiances
 \[L_{\text{CERES}} = A + B \cdot L_{\text{GERB}} \]

- homogenise radiances
 \[L_{\text{homog. CERES}} = -\frac{A}{2} + \left[1 + \frac{1-B}{2} \right] L_{\text{CERES}} \]
 \[L_{\text{homog. GERB}} = \frac{A}{2} + \left[1 - \frac{1-B}{2} \right] L_{\text{GERB}} \]

- homogenise fluxes - step 1
 \[F_{\text{homog. CERES}} = -\pi \frac{A}{2} + \left[1 + \frac{1-B}{2} \right] F_{\text{CERES}} \]
 \[F_{\text{homog. GERB}} = \pi \frac{A}{2} + \left[1 - \frac{1-B}{2} \right] F_{\text{GERB}} \]
Flux homogenisation

- good reference = mean flux averaged over all viewing angles
 - removes most of the systematic errors dependent on angles
- problem GERB: mostly backscatter measurements

$$\text{reference} = \frac{\sum_b \text{CERES} \cos(\theta_{vz}) \sin(\theta_{vz})}{\sum_b \cos(\theta_{vz}) \sin(\theta_{vz})}$$
2 CERES flux homogenisation

- choose GERB data for one fixed GERB viewing angle bin b_{GERB} as intermediate reference
- For every possible CERES viewing angle bin b:
 regress CERES fluxes versus GERB fluxes for fixed GERB viewing angle bin b_{GERB}:

$$F_{\text{CERES}}(b) = A(b) + B(b) \, F_{\text{GERB}}(b_{\text{GERB}})$$
calculate reference regression parameters

\[A = \frac{\sum_b A(b) \cos(\theta_{\nu z}) \sin(\theta_{\nu z})}{\sum_b \cos(\theta_{\nu z}) \sin(\theta_{\nu z})} \]

\[B = \frac{\sum_b B(b) \cos(\theta_{\nu z}) \sin(\theta_{\nu z})}{\sum_b \cos(\theta_{\nu z}) \sin(\theta_{\nu z})} \]

homogenise CERES fluxes relative to reference

\[F_{\text{CERES, homog.}} = A - A(b) + (1 + B - B(b)) F_{\text{CERES}}(b) \]
8 GERB flux homogenisation

- GERB fluxes for all possible bins can be homogenised by regression against homogenised CERES fluxes
Needed data

- CERES in RAPS mode: all viewing zenith angles and relative azimuth angles are covered.
- All surface scene types and solar zenith angle intervals need to be covered in METEOSAT field of view.
- e.g. 6 RAPS days in August 1998 for TRMM.
Conclusions

- A method has been proposed to homogenise GERB and CERES fluxes.
- The method removes the angular dependent systematic differences between GERB and CERES.
- The method will be tested using the 6 CERES RAPS days in August 1998 using GERB like data derived from METEOSAT.