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The complexity of aerosol-cloud interactions 

Dynamics 
Updraft Velocity 
Large Scale Thermodynamics 

Particle characteristics 
Size 
Concentration 
Chemical Composition 

Cloud Processes 
Cloud droplet formation 
Drizzle formation 
Rainwater formation 
Chemistry inside cloud droplets 

All the links need to be incorporated in global models 
The links need to be COMPUTATIONALLY feasible. 

aerosol 

activation 
drop growth 

collision/coalescence 

Everything depends on everything across multiple scales 
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We focus on the aerosol-CCN-droplet link  

The complexity of aerosol-cloud interactions 
Everything depends on everything across multiple scales 



The “simple” story of cloud droplet formation 

Basic idea:  Solve conservation laws for energy and water for an 
ascending Lagrangian parcel containing some aerosol. 
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activation 
drop growth 

 S 

Smax 
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Steps are:  
•  Parcel cools as it rises 
•  Exceed the dew point at LCL 
•  Generate supersaturation 
•  Droplets start activating as 
  S exceeds their Sc 

•  Condensation of water  
  becomes intense. 
•  S reaches a maximum 
•  No more droplets form 
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Steps are:  
•  Parcel cools as it rises 
•  Exceed the dew point at LCL 
•  Generate supersaturation 
•  Droplets start activating as 
  S exceeds their Sc 

•  Condensation of water  
  becomes intense. 
•  S reaches a maximum 
•  No more droplets form 
  
 Theory known for many years. Too slow to 

implement “completely” in large scale models 



Input:   P,T, vertical wind, particle characteristics. 
Output: Cloud properties (droplet number, size distribution). 
How:      Solve an algebraic equation (instead of ODE’s). 

“Mechanistic” Cloud Parameterizations 
efficiently solve the drop formation problem 

Characteristics: 
-  103-104 times faster than numerical parcel models. 
-  some can treat very complex chemical composition. 
-  have been evaluated using in-situ data with large success 
(e.g., Meskhidze et al., 2006; Fountoukis et al., 2007) 

Examples: 
Abdul-Razzak et al., (1998); Abdul-Razzak et al., (2000); 
Nenes and Seinfeld (2003), Fountoukis and Nenes (2005), 
Ming et al., (2007); Barahona and Nenes (2007) 



Mechanistic Parameterizations  
Current state of the art in GCMs 

Physically-based prognostic 
representations of the 
activation physics. 

Cloud droplet formation is 
parameterized by applying 
conservation principles in an 
ascending adiabatic air parcel. 

All parameterizations 
developed to date rely on the 
assumption that the droplet 
formation is an adiabatic 
process.  Aerosol particles 

in an closed 
adiabatic parcel 

Cloud droplets 

CCN 
Activation 



Major “workhorse” for producing the aerosol-cloud datasets 
we need for parameterization evaluation and development.  

In-situ airborne platforms 

CIRPAS Twin Otter 

NOAA P3 



Aerosol size 
distribution 

Cloud updraft 
Velocity 

Aerosol 
composition 

Parameterization 

Predicted 
Cloud droplet 

number 

Cloud Drop Parameterization Evaluation 
CDNC “closure” 



Aerosol size 
distribution 

Cloud updraft 
Velocity 

Aerosol 
composition 

Parameterization 

Predicted 
Cloud droplet 

number 
Compare 

Observed Cloud 
Droplet 
Number 

Parameterization Evaluation 
CDNC “closure” 



Input:   P,T, vertical wind, particle characteristics. 
Output: Cloud properties. 
How:      Solve an algebraic equation (instead of ODE’s). 
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Adiabatic Cloud Formation Parameterization: 
Nenes and Seinfeld, 2003 (and later work). 

Features: 
-  103-104 times faster than numerical cloud model. 
-  can treat very complex chemical composition. 
-  FAST formulations for lognormal and sectional    
   aerosol is available 

We evaluate this with the in-situ data. 



CDNC closure during ICARTT (Aug.2004) 

Cumuliform and 
Stratiform clouds 
sampled 
Investigate the 
effect of power 
plant plumes on 
clouds 



Fountoukis et al., JGR (2007) 

CDNC closure 
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CRYSTAL-FACE (2002) 
Cumulus clouds 



Meskhidze et al.,JGR (2005) 
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CSTRIPE (2003) 
Coastal Stratocumulus  



What we have learned from CDNC 
closure studies 

!  “Mechanistic” parameterizations do a good job of 
capturing droplet number for nearly adiabatic 
clouds and… when you know the input (they capture 
the physics). 

!  Gaussian PDF of updraft velocity is sufficient to 
capture average CDNC. 

!  In fact, the average updraft velocity does equally 
well  (and is much faster) in predicting CDNC, 
compared to integrating over a PDF.  

!  CDNC closure studies also can be used to infer a 
range of droplet growth kinetic parameters (“water 
vapor mass uptake coefficient”). 

  

 



CIRPAS Twin Otter 

Range of a inferred 
from in-situ droplet 

closure studies 

ICARTT (2004) 

Optimum closure 
obtained for α 

between 
0.03 – 1.0  

 
Same range found 

in CSTRIPE, 
CRYSTAL-FACE 

and MASE studies 
 

We’ll get back to 
this point later on 
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Issues of Parameterizations 
!  Highly idealized description of clouds. Most 

often they are adiabatic (few feedbacks)... 

!  They require information not currently found 
in most GCMs (cloud-base updraft velocity, 
aerosol chemical composition, etc.). 

!  Few processes are represented and are 
largely decoupled from other processes or 
interact at the “wrong scale” (e.g., dynamics, 
entrainment and autoconversion/drizzle) 

!  Very difficult to address… but not impossible. 
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Real Clouds are not Adiabatic  

 

Peng, Y. et al. (2005). J. Geophys. Res., 110, D21213 

Entrainment of air 
into cloudy parcels 
decreases cloud 
droplet number 
relative to adiabatic 
conditions  

In-situ observations 
often show that the 
liquid water content 
measured is lower 
than expected by 
adiabaticity. 

Neglecting entrainment may lead to an overestimation of in-
cloud droplet number biasing indirect effect assessments 

We need to include entrainment in the parameterizations 



Barahona and Nenes (2007) 
Droplet formation in entraining clouds 

Cloud droplet formation is 
parameterized by integrating 
conservation principles in an 
ascending entraining air parcel. 

Equations are similar to adiabatic 
activation – only that mixing of 
outside air is allowed . 

“Outside” air with (RH, T’) is 
assumed to entrain at a rate of   
e  (kg air)(kg parcel)-1(m ascent)-1 

Cloud droplets 

CCN 
Activation RH, T’ 

The formulation is the first of its kind and can treat all the 
chemical complexities of organics (which we will talk about in a bit).  
Formulations available for either lognormal or sectional aerosol.  



Entraining Parameterization  
vs. parcel model 

V=0.1,1.0, and 5.0 ms-1. T-T’=0,1,2 °C.  
RH=60, 70, 80, 90 %. Background aerosol. 
 2000 simulations.  

2 5 % 
difference 

Comparison with 
detailed 
numerical model. 
Parameterization 
closely follows 
the parcel model  
Mean relative 
error ~3%. 
104 times faster 
than numerical 
parcel model.  

Barahona and Nenes, (2007) 
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Aerosol Problem: Vast Complexity 
An integrated “soup” of   

Inorganics, organics (1000’s) 
Particles can have uniform 
composition with size. 
… or not 
Can vary vastly with space 
and time (esp. near sources) 

Predicting CCN concentrations is a convolution of size  
distribution and chemical composition information.  
 
CCN activity of particles is a strong function (~d-3/2) of 
aerosol dry size and (a weaker but important) function 
of chemical composition (~ salt fraction-1). 



Aerosol Description: Complexity range 
The … headache of organic species 

!  They can act as surfactants and facilitate cloud 
formation. 

!  They can affect hygroscopicity (add solute) and 
facilitate cloud formation. 

!  Oily films can form and delay cloud growth kinetics 

!  Some effects are not additive. 

!  Very difficult to explicitly quantify in any kind of model. 

  

 

The treatment of the aerosol-CCN link 
is not trivial at all. 



How well do we understand the aerosol-CCN link?  
What is the level of aerosol complexity required to “get 
things right”? 
How much “inherent” indirect effect uncertainty is 
associated with different treatments of complexity? 

Use in-situ data to study the aerosol-CCN link: 

- Creative use of CCN measurements to “constrain” 
what the most complex aspects of aerosol (mixing state 
and organics) are.  

- Quantify the uncertainty in CCN and droplet growth 
kinetics associated with assumptions & simplifications. 

 

CCN: Looking at what’s important 



How is it done? 
•  Measure aerosol size 
distribution and composition.  

•  Introduce this information 
Köhler theory and predict 
CCN concentrations. 

•  Compare with measured CCN 
over a supersaturation range 
and assess closure. 
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Do we understand the aerosol-CCN link?  

Test of theory: “CCN Closure Study” 

CCN MEASUREMENTS CCN PREDICTIONS 

CCN closure studies going on since the 70’s. 
Advances in instrumentation have really overcome limitations 



Measuring CCN: a key source of data 
Goal: Generate supersaturation, expose CCN to it and count how 
many droplets form. 

Metallic cylinder with walls wet. 
Apply T gradient, and flow air. 
•  Wall saturated with H2O.  
•  H2O diffuses more quickly than 
heat and arrives at centerline first. 
•  The flow is supersaturated with 
water vapor at the centerline. 
•  Flowing aerosol at center would 
activate some into droplets. 

Count the concentration and size of 
droplets that form with a 1 s 
resolution. 

wet wall we
t 

wa
ll 

Outlet: [Droplets] = [CCN] 

Inlet: Aerosol 

Roberts and Nenes (2005), Patent pending 

Continuous Flow Streamwise  
Thermal Gradient Chamber 



Development of Streamwise TG Chamber 
sc

al
e 

= 
1 

m
 

1st version 
April 2002 

2nd version 
January 2003 

DMT 
July 2004 

mini version 
August 2006 

Roberts and Nenes, AS&T (2005); Lance et al., AS&T (2006) 



Two DMT CCN counters  
(Roberts and Nenes, AST, 2005; 

Lance et al., AST, 2006) 

TSI SMPS, for size distribution 

Aerodyne AMS, for chemical  
composition 

2 weeks of aerosol and CCN data (0.2 - 0.6 % supersaturation) 

AIRMAP Thompson Farm site 
Located in Durham, New Hampshire 
Measurements done during ICARTT 2004 
Air quality measurements are performed 
on air sampled from the top of a 40 foot 
tower. 

An example of a CCN closure 



CCN Measurements: “Traditional” Closure 

20% overprediction 
(average). 
 
Assuming uniform 
composition with size 
rougly doubles the 
CCN prediction error. 
 
Introducing 
compreshensive 
composition into CCN 
calculation often gives 
very good CCN 
closure.  
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NOAA P3 (GoMACCs) 

Larger-scale CCN variability (ageing) 
How important is external mixing to “overall” CCN 
prediction  
Can we understand CCN in rapidly changing environments? 

Look at CCN data from GoMACCs (Houston August, 2006) 
and MILAGRO (Mexico City, March 2006). 

T0 site (MILAGRO) 
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~ 100 km September 21 Flight 



10

100

1000

10000

100000

0 1 2 3 4 5

hours after takeoff

C
on

ce
nt

ra
tio

n 
(c

m
-3

)

0.10

0.15

0.20

Su
pe

rs
at

ur
at

io
n 

(%
)

Measured CCN

Total CN

predicted CCN

Su
pe

rs
at

ur
at

io
n 

(%
) 

CCN tracks the CN variability  
when plume ages 

~ 100 km September 21 Flight 



Some “take home” points 
CCN theory is adequate. Closure errors are from lack of 
information (size-resolved composition, mixing state). 
Aerosol variability close to source regions often does 
not correlate with CCN variability. CCN levels are often 
controlled by “background” (or “aged”) concentrations. 

As plumes age, CCN increase and covary with total CN. 
This happens on a typical GCM grid size. 

… so external mixing considerations may be required 
only for GCM grid cells with large point sources of CCN 
(like megacities). Encouraging for large-scale models. 

Potential problem: Megacities are increasing in number 
(primarily in Asia), so the importance of external mixing 
(i.e. # of GCM cells) may be important in the future. 
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Measure CCN activity of aerosol with known diameter 

Get more out of CCN instrumentation:  
Size-resolved measurements 
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What the Activation Curves tell us 
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“characteristic” critical supersaturation:  
a strong function of “average” aerosol 
composition 
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theoretical spectrum for AS
MIRAGE data (3/30/06 ~9:00)
sigmoidal fit to MIRAGE data

Ammonium Sulfate Lab Experiment 
 

Ambient Data 
(Mexico City) 

Hypothetical “monodisperse” 
single-component aerosol 

“characteristic” critical  
supersaturation 

Ambient Data Is Much Broader Because Chemistry varies alot 

What the Activation Curves tell us 
Slope has a wealth of information as well. 



First Approach;  
slope is from chemistry alone 
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The slope of the activation curve directly translates 
to the width of the chemical distribution 

Sigmoidal fit Soluble Volume Fraction  =SVF

Köhler Theory 
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What we get: PDF of composition as a function of particle 
size every few minutes.  

This is a complete characterization of CCN ‘mixing state’. 



“Chemical Closure” 
inferred vs measured soluble fraction 

The average distribution of soluble fraction agrees very  
well with measurements. Our measurements give what’s 

“important” for CCN mixing state. 

Look at CCN data from MILAGRO (Mexico City, March 2006). 
Compare against “bulk” composition measurements 



Diurnal Variability in CCN mixing state 
(Mexico City) 



Diurnal Variability in CCN mixing state 
(Mexico City) 



Some “take home” points 
Local signatures of aerosol sources on CCN mixing state 
largely disappear when the sun comes up 
(Photochemistry? Boundary layer mixing? New particle 
formation and growth? Cloud processing?). 

… so external mixing considerations may be required 
only for GCM grid cells with large point sources of CCN 
(like megacities). Encouraging for large-scale models, 
which really need simple but effective ways to predict 
CCN. 

Potential problem: Megacities are increasing in number 
(primarily in Asia), so the importance of external mixing 
(i.e. # of GCM cells) may be important in the future. 



The problem of CCN prediction in global models is 
not “hopeless”. Good news. 

Size distribution plus assuming a uniform mixture of 
sulfate + insoluble captures most of the CCN 
variability (on average, to within 20-25% but often 
larger than that). 

Scatter and error is because we do not consider 
mixing state and impact of organics on CCN activity. 

  
How important is this kind of uncertainty?  

The term “good closure” is often used, but how 
“good” is it really? 

Due to time limitations… let’s get to the point. 

CCN: Looking at what’s important 



CCN predictions: “take home” 
points 

Resolving size distribution and a uniform mixture 
of sulfate + insoluble can translate to 50% 
uncertainty in indirect forcing. 

The effect on precipitation can be equally large 
(or even larger because of nonlinearities). 

Even if size distribution were perfectly 
simulated, more simplistic treatments of aerosol 
composition imply even larger uncertainties in 
indirect effect. Size is not the only thing that 
matters in CCN calculations. 

Scatter and error is because we do not consider 
mixing state and impact of organics on CCN 
activity. 



Organics & CCN: The Challenges 
Since CCN theory works well, we can use it to 
infer the impact of organics on droplet 
formation. 

We want “key” properties that can easily be 
considered in current parameterizations 

Desired information: 
–  Average molar properties (molar volume, solubility) 
–  Droplet growth kinetics 
–  Chemical heterogeneity (mixing state) of aerosol 
–  Surface tension depression 

Once more, size-resolved CCN measurements  
can provide a key source of data 



Go back to the Activation Curves 
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“characteristic” critical supersaturation:  
a strong function of “average” (most probable) 
aerosol composition. We can use this to infer 
composition of organics 



Inferring Molar Volume from CCN activity:  
Köhler Theory Analysis (KTA) 

5257.15523.1 −= dsc  

"  Plot characteristic 
supersaturation as a function 
of dry particle size. 

"  Fit the measurements to a 
power law expression. 

"  Relate fitted coefficients 
to aerosol properties (e.g. 
molecular weight, solubility) 
by using Köhler theory: 
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Method shown to work well for laboratory-generated aerosol (Padró et 
al., ACPD) and SOA generated from ozonolysis of biogenic VOC (Asa-
Awuku et al., ACPD), even marine organic matter! 

Molar Volume 
This is what you 

need to know 
about organics for 

CCN activity 



KTA: Major findings on soluble organics 
Many “aged” soluble organics from a wide variety of sources 

have a 200-250 g mol-1 . For example: 
Aged Mexico City aerosol from MILAGRO. 

Secondary Organic Aerosol from  
 a-pinene and monoterpene oxidation (Engelhart et al., ACPD). 
 Ozonolysis of Alkenes (Asa-Awuku et al., ACPD) 

     Oleic Acid oxidation (Shilling et al., 2007) 

In-situ cloudwater samples collected aboard the CIRPAS 
Twin Otter during the MASE, GoMACCs field campaigns 

… and the list continues (e.g., hygroscopicity data from 
the work of Petters and Kreidenweis).  

What varies mostly is not the “thermodynamic” properties 
of the complex organic “soup” but the fraction of soluble 
material… Complexity sometimes simplifies things for us. 



Growth kinetics from CCN measurements 
Size of activated droplets measured in the instrument. 
The impact of composition on growth kinetics can be inferred: 
•  compare against the growth of (NH4)2SO4 (thus giving a 

sense for the relative growth rates), and,  
•  use a model of the CCN instrument (Nenes et al., 2001), to 

parameterize measured growth kinetics in terms of the 
water vapor uptake coefficient, α. 
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Roberts and Nenes (2005); Lance et al. (2006) 



Do growth kinetics of CCN vary?  
Measurements of droplet size in the CCN instrument 
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Model; particles that grow “like” 
(NH4)2SO4 

Critical supersaturation (%) 

Marine Stratocumulus (MASE) 
All CCN grow alike 

Urban (Mexico City, MILAGRO) 
CCN don’t grow alike.  

~ 250 g mol-1, no surfactants Strong surfactants present 



Mexico City droplet growth kinetics 

Slow growing,  
kinetically delayed 
droplets  
bring down 
the average 

Early morning aerosol: 
Externally mixed, but 

CCN grow like 
(NH4)2SO4 

Mid - day: 
Internally mixed, 
but many CCN do 

NOT grow like 
(NH4)2SO4 



Does growth kinetics change?  
Measurements of droplet size in the CCN instrument 

Pure (NH4)2SO4 
In-Cloud Aerosol 
Sub-Cloud Aerosol 
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Model; low uptake  
Coefficient 

Model; high uptake  
Coefficient 

Critical supersaturation (%) 

Marine Stratocumulus (MASE) 
All CCN grow alike 

Urban (Mexico City, MIRAGE) 
CCN don’t grow alike.  

~ 250 g mol-1, no surfactants Strong surfactants present 

How important is this α range? 
Compare Indirect Forcing that arises from  

!  Changes in droplet growth kinetics (uptake 
coefficient range: 0.03-1.0). 

!  Preindustrial-current day aerosol changes 



General Circulation Model 
•  NASA GISS II’ GCM 
•  4’×5’ horizontal resolution 
•  9 vertical layers (27-959 mbar)  
Aerosol Microphysics 
 
•  The TwO-Moment Aerosol Sectional (TOMAS) 

microphysics model (Adams and Seinfeld, JGR, 
2002) is applied in the simulations.  

•  Model includes 30 size bins from 10 nm to 10 µm. 
•  For each size bin, model tracks: Aerosol number, 

Sulfate mass, Sea-salt mass 
•  Bulk microphysics version is also available (for 

coupled feedback runs). 

Global Modeling Framework Used 



In-cloud updraft velocity (for N&S only) 
•  Prescribed (marine: 0.25-0.5 ms-1;continental: 0.5-1 ms-1).  
•  Diagnosed from large-scale TKE resolved in the GCM.  

Global Modeling Framework Used 

Cloud droplet number calculation 
Nenes and Seinfeld (2003); Fountoukis and Nenes (2005) 

cloud droplet formation parameterizations. 
#  Sectional and lognormal aerosol formulations. 
#  Can treat very complex internal/external aerosol, and 

effects of organic films on droplet growth kinetics. 

Emissions 
Current day, preindustrial 

Autoconversion 
Khairoutdinov & Kogan (2000), Rotstayn (1997) 



Sensitivity of indirect forcing to the 
water vapor uptake coefficient 

α=1.0 - α=0.03 Current-Preindust. 

Forcing from range in growth kinetics (-1.12 W m-2) is as 
large as Present-Preindustrial change (-1.02 W m-2) !  
Spatial patterns are very different. Nenes et al., in preparation 

Wm-2 



Overall Summary 
CCN theory is adequate for describing cloud droplet 
formation. 
Simplified treatments of aerosol composition get “most” 
of the CCN number right, but the associated uncertainty 
in CCN and indirect forcing can still be large. 
Size-resolved measurements of CCN activity can be used 
to infer the effects of organics in a simple way. It seems 
that simple descriptions are possible and as a community 
we need to systematically delve into this. 
The impact of organics on droplet growth kinetics is a 
important issue that remains unconstrained to date. This 
is a “chemical effect” that has not been appreciated  
enough... 



Overall Summary 
Droplet formation parameterizations are at the point 
where they can explicitly consider all the chemical 
“complexities” of CCN calculations and droplet growth 
kinetics. 

Observations should provide the “constraints” of organic 
properties – classified with respect to age and source. 

They can even begin incorporating effects of dynamics 
(entrainment, variable updraft). 

People developing aerosol-cloud parameterizations need 
to work very hard at linking them at the cloud-scale, 
starting off from idealized “conceptual” feedback 
models. 

A lot of work to do… but it’s exciting and challenging (not 
impossible). 
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