Edition 4 clear-sky shortwave Angular Distribution Models over ocean

Lusheng Liang¹, Wenying Su², Joseph Corbett¹ and
Zachary Eitzen¹
1 - SSAI; 2 - NASA, LaRC

radiance to flux: clear-sky SW ADMs over ocean

- 1. Sort measured radiances into angular and wind speed bins (w; θ_0 , θ , ϕ) and calculate mean radiances;
- Calculate mean flux by integrating the mean radiances over all θ and φ;
- 3. Define anisotropic factor;

4. Convert measured radiances to fluxes.

$$R(w;\theta_0,\theta,\varphi) = \frac{\pi \hat{I}(w;\theta_0,\theta,\varphi)}{\hat{F}(w;\theta_0)}$$

Aerosol in Ed.2 Clear-sky ADMs over Ocean

- Aerosol is not directly accounted for in Ed.2 ADM;
- It is implicitly accounted for by a theoretical scale factor when radiances are converted to fluxes (Loeb et al., 2005).

$$F = \frac{\pi I_O}{R \left(\frac{R_{I_O}^{th}}{R_{\hat{I}}^{th}}\right)}$$

- R is the anisotropic factor for converting \hat{I} at (w, θ_0 , θ and ϕ) to F;
- $R_{\hat{I}}^{\it th}$ is the theoretical anisotropic factor for \hat{I} ;
- $R_{I_0}^{\it th}$ is the theoretical anisotropic factor for I_0 .

How to quantify the performance of an ADM?

RMS of normalized radiance differences between ADM-prediction and observation

$$RMS = \sqrt{\frac{1}{n} \sum \left(\frac{\hat{I}^{i}}{\left\langle \hat{I} \right\rangle} - \frac{I_{O}^{i}}{\left\langle I_{O} \right\rangle} \right)^{2}}$$

- \hat{I}^i is the radiance value of ADM at (w, θ_0 , θ and ϕ),
- I_a^i is the radiance value of the theoretical model at (w, θ_0, θ) and ϕ ,
- $\langle \ \rangle$ is the grid mean.

Where to improve?

RMS is a function of AOD and aerosol type

Flux viewing angular consistency depends on aerosol fine mode fraction (Loeb et al., 2007)

Aerosol retrievals

Two options to obtain aerosol information

- Use MODIS aerosol product
- Develop our own version of aerosol retrievals

Why do we prefer to developing our own version of aerosol retrievals?

- MODIS aerosol retrieval is not produced purposely for CERES flux inversion. Not every clear-sky FOV over ocean has a MODIS aerosol retrieval, ~8.3% of clear CERES FOVs do not have MODIS aerosol retrievals.
- Our own aerosol retrieval is self-consistent with CERES-MODIS cloud mask.
- MODIS aerosol retrieval is only available for glint angle > 40°.

Aerosol retrievals

Five MODIS bands

0.47um, 0.55um, 0.66um, 0.87um, 1.24um (Terra) and 2.13um(Aqua)

- For MODIS glint angle > 40°, two AOD values retrieved for two aerosol models: OPAC maritime tropic and urban models (Hess et al., 1998)
- For MODIS glint angle ≤ 40°, AOD is retrieved for OPAC maritime tropic aerosol model only

AOD-and-type classified ADMs for glint >40°

Percentile approach to sort FOVs

AOD retrieval - comparison with MODIS: glint angle > 40°

MODIS
Mean AOD=0.09

0.5 0.4 0.3 0.2 0.1 0.0

CERES
Mean AOD=0.13

AOD retrieval - comparison with MODIS: glint angle > 40°

CERES
Mean AOD=0.13

0.5 0.4 0.3 0.2 0.1 0.0

CERES
Mean AOD=0.07
(most clear conservative FOVs)

AOD classified ADMs for glint ≤ 40°

Percentile approach to sort FOVs

Ambiguity of AOD retrieval for glint ≤40°

AOD retrieval - comparison with MODIS: glint angle ≤ 40°

MODIS
Mean AOD=0.09
(glint angle > 40°)

0.3 0.2 0.1 0.0

0.5

0.4

CERES Mean AOD=0.13 (glint angle ≤ 40°)

FOV sampling

Clear-sky FOVs over ocean 100%

FOVs with imager glint >40° 52% (one AOD realization)

Two AOD realizations 9%

One AOD realization 39%

For a FOV with an AOD retrieval, flux is inverted by Ed4ADM.
Otherwise, the flux is inverted by the updated-Ed2ADM based on Ed4 SSFs.

ADM performance: Terra

update-Ed2ADM

Ed4ADM

ADM performance: Terra

(2002, Terra rap mode)

ADM performance: Aqua

update-Ed2ADM

Ed4ADM

(2004, Aqua rap mode)

ADM performance: Aqua

(2004, Aqua rap mode)

Aerosol dependence

Ed2 ADMs

Ed4 ADMs

Summary

- The aerosol dependent clear-sky ADMs over ocean are developed for Ed4. ADMs for both glint > 40° and glint ≤ 40°, respectively.
- For glint > 40°, ADMs are constructed in coarse-mode-like and fine-mode-like aerosols, respectively, and in each of them further in 3 percentile AOD bins; for glint ≤ 40°, ADMs are constructed in 3 percentile AOD bins.
- Compared to the Ed2. ADMs, Ed4. ADMs characterize the clear ocean more accurately. Significant improvements are noticed over coastal regions where heavy dust plumes and pollutions are expected.
- Globally, the ADM RMS reduced from 10.5% to 8.7% for Terra and 11.9% to 10.1% for Aqua. The instantaneous global mean flux is changed by -0.22w/m² for Terra and -0.05w/m² for Aqua.
- Dependence on aerosol fine mode fraction is reduced in Ed4.ADMs.