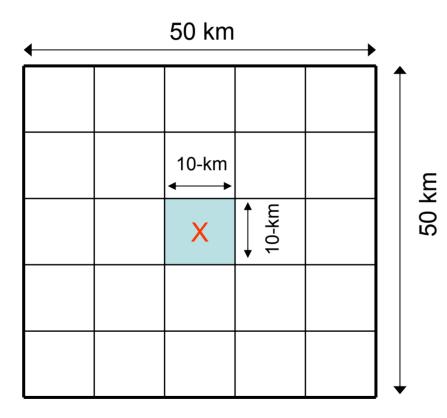


8th CERES-II Science Team Meeting Nov 14-16, 2007, Victoria, B.C., Canada

Comparison of single- and multi-channel AOD revisited

Istvan Laszlo (NOAA/NESDIS) and Hongqing Liu (QSS)

Objective and Strategy


• Motivation:

- Two aerosol products are reported in the CERES SSF data:
 - a) derived from the NASA/GSFC multi-channel MODIS AOD and
 - b) estimated from MODIS reflectances with the NOAA/NESDIS single-channel algorithm.
- Objective:
 - Compare single-channel and multi-channel retrievals of AOD when only the algorithms differ.
- Strategy:
 - Retrieve single-channel AOD_S at 25 oceanic locations from reflectances in the NASA/GFSC MODIS Atmosphere Parameters Subset Statistics (MAPSS) dataset.
 - Compare AOD_S with multi-channel (level 2 MOD04, MYD04) AOD_M from MAPSS.

The MAPSS data

MODIS Atmosphere Parameters Subset Statistics (MAPSS) dataset has spatial statistics for 5 by 5 boxes:

- the reflectance at the middle point in a 5 by 5 box,
- AOD at the middle point in a 5 by 5 box,
- average of 10-km reflectances in a 5 by 5 box used in AOD retrieval,
- average of 10-km AOD in a 5 by 5 box.

MAPSS sites used

25 sites representing different dominant aerosol types are selected for this study

Only three sites (in red) have SP.

- Results presented at the 2nd CERES-II meeting:
 - good agreement in 1632-nm channel AODs,
 - positive single-channel AOD bias in 644-nm channel,
 - scattering-angle dependent bias.
- So why again?
 - MODIS retrieval was revised (Collection 5).
 - MAPSS reflectances are from L2 not L1 as previously assumed. They are already "corrected" for gas absorption!
 - Previous study accounted for gas absorption twice, thus over estimated AOD.

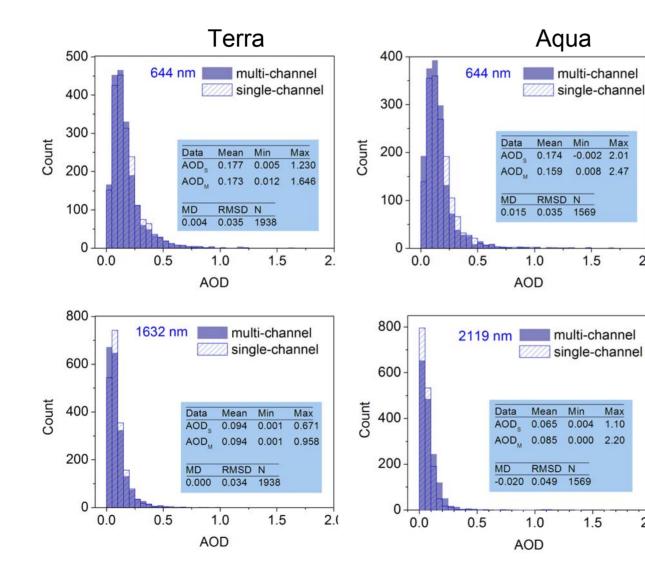
- Reflectances in the original L2 HDF files were compared to those in MAPSS.
 - Identical reflectances.
- The locally implemented MODIS code, for which the L2 HDF files are direct inputs, was used to retrieve the AOD.
 - Identical AODs.
- Conclusion: MAPSS reflectances are indeed corrected for gas absorption.

- Calculated new LUT
 - Same procedure as for CERES, but no gas absorption.
- AOD retrieval from 10-km reflectance:
 - for anti-solar side of orbit, and solar zenith < 70°, sensor zenith
 < 60°:
 - Collection 5 Terra/MODIS:
 - 02/2000 06/2007 (31 months)
 - Missing: 10-11/2000; 05/2001-03/2005; 10/2005-06/2006
 - Collection 5 Aqua/MODIS: 07/2002 06/2007 (34 months)
 - Missing: 06/2003-06/2004; 08/2004-12/2004;10/2005/-03/2006; 02-03/2007

AOD is retrieved from the 644-nm and 1632/2119-nm channels.

AOD Histograms

10-km MODIS/Terra/Aqua reflectance


Max

Max

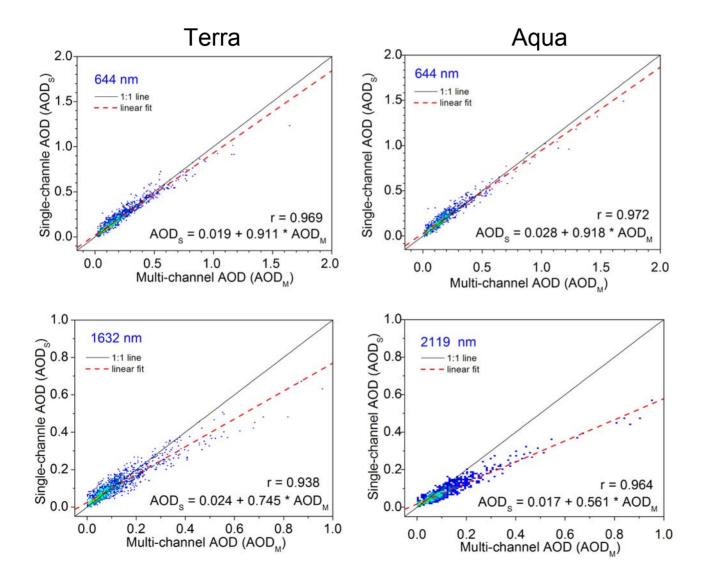
2.0

2.0

Mean difference MD for Terra is small; it is larger for Aqua.

AOD_S-AOD_M

	10-km	50-km			
Terra					
644 nm	0.004	0.002			
1632 nm	0.000	-0.005			
Aqua					
644 nm	0.015	0.014			
2119 nm	-0.020	-0.029			


50-km statistics of MD are similar to those for the 10 km central MAPSS pixel.

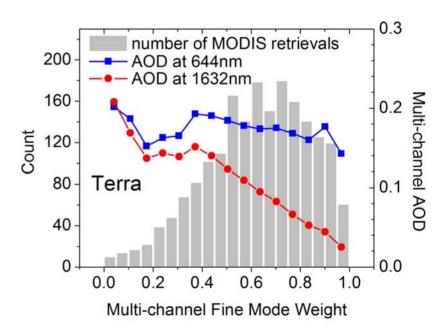
AOD Scatter Plot

10-km MODIS/Terra/Aqua reflectance

Scatter plot of single-channel AOD vs. multichannel AOD at 644 nm and 1632 (2119) nm for the single-channel geometry.

Relative to the multi-channel AOD, singlechannel AOD is larger/smaller at small/large AOD.

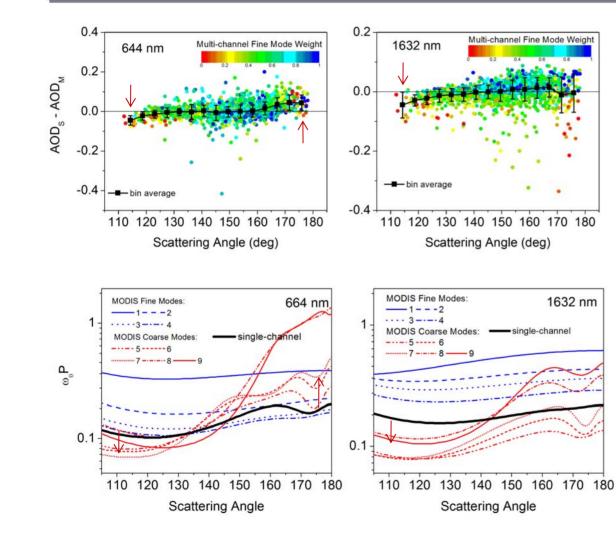
In Search of Explanation

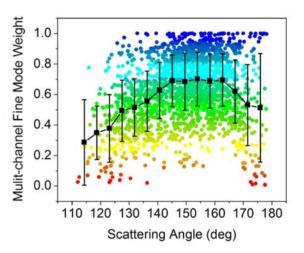

 $AOD_S > AOD_M$ at small AOD

- Compared MODIS and singlechannel LUTs with AOD=0
 - $R_{S} < R_{M}$
 - converted $R_s R_M$ to AOD with SS approx.
 - not large enough to explain offset.

 $AOD_S < AOD_M$ at large AOD

- More obvious as wavelength increases
- Large AOD is usually associated with large particles according to MODIS
 - Partially explains single- and multichannel AOD difference (next slide)


Wavelen gth (nm)	R _s -R _m	AOD _S - AOD _M	Offset	
			Terra	Aqua
644	-1.058E-3	0.013	0.019	0.028
1632	-2.809E-4	0.005	0.024	
2119	-1.839E-4	0.004	0.017	



AOD Difference vs. Scattering angle MODIS/Terra 10-km Reflectance

- AOD_S < AOD_M at lower end of scattering angle range; reverse is true at upper end at 644 nm.
- AOD at these scattering angles is associated with larger particles.

.

Single- and multi-channel phase function differences may explain the AOD difference.

- Compared single- and multi-channel AOD derived from the same "aerosol" reflectance at oceanic sites.
- Good agreement between S and M products in spite of substantial algorithm differences.
- Agreement is better for Terra than Aqua (not clear why).
- Scattering angle dependence of the AOD difference can be partially explained by the different aerosol models applied in the retrievals.
- On average:
 - $AOD_{S} > AOD_{M}$ at 644 nm
 - $AOD_S \ge AOD_M at 1632 nm$
 - $AOD_S \le AOD_M at 2119 nm$