

Test of the Iris Hypothesis Using CERES SSF Data

Lin Chambers and Bing Lin NASA Langley Research Center Hampton, VA 23681

Outline

1. Background

Lindzen et al.' (2001) climate feedback: observation & model

- 2. CERES Data
- 3. 3.5-box Model Calculation
- 4. Discussions: cirrus
- 5. Summary

Atmospheric Moisturization

FtG, 5. Scatterplots showing how cirrus coverage varies with cloud-weighted SST for both "all" (a) upper-level clouds and (b) thick clouds. Also shown is (c) the variation of currulus area with cloud-weighted SST and (d) the variation of cirrus coverage normalized by cumulus coverage. Data points correspond to daily averages. (See text for details.)

Tst = Ts + 10K Tset = Ts - 10K

1. Background (cont.)

Based on the anvil variations with SST observed from GMS data and 3.5-box greenhouse model, Lindzen et al. (2001) proposed a very strong negative radiative feedback of the clouds on climate change ($-0.45 \sim -1.1$ K/K; or **IR Iris**).

Q: Do CERES data show the similar cloud change with SST, and feedback processes?(Since we do not know where many values in Lindzen et al. come from)

2. CERES TRMM Data

Definitions of clouds & climate regimes: convective clouds: Tb(10.8) < 220K cloudy moist: Tb(10.8) < 260K (anvil+DCC) or other cloudy definitions dry area: broadband LW > LW50 LW50: 50% percentile of 8-month LW statistics

CERES Estimates

cle	ar mois	st: all ot	her pixel	S ^{Lindzen}	et al.	
	dry	clear moist	cloudy moist	dry	clear moist	cloud mois
	0.5	0.4	0.1	0.5	0.28	0.22
edo	0.154	0.258	0.510	0.211	0.211	0.349
	338.7	297.1	196.2	315.9	315.9	260.6
	287.7	253.9	154.8	303.1	263.1	137.7

88

155 **CERES** (sketch) Trapping 99 more Absorbing 101 less Net $-2w/m^2$ clear =0.51 moist 254 196

Model cloud feedbacks

Solid lines: CERES; Dashed lines: Lindzen et al.

4. Discussions

LCH points:

- Edge effects: increasing SST & keeping a constant Tb threshold (260K) cutting out radiative warming thin cirrus
- 2. 'LCH specified subjectively the ORL and albedo for the three regions while requiring that the mean OLR and albedo of the tropics are consistent with the ERBE inferred values'.

Discussions (cont.)

- 3. 'LCH inferred areal coverage of high-level clouds using a threshold temperature of 260K..... This areal coverage of high-level clouds is **merely an index** forIt is **not meant to be** the total areal coverage of high-level clouds......'
- 4. 4. 'If we **assume** that their estimates of OLR in the three tropical regions **are appropriate** for studying the climate sensitivity, the feedback factors of high-level clouds should remain negative as suggested by LCH although the magnitudes are somewhat smaller,'

CERES Albedo and LW

11									
17	14.9	5.1	0.9	0.8	1.8	0.7			
05	0.7	8.5	5.0	4.2	3.4	0.6			
د.ج 7	1.9	6.4	2.3	1.0	0.4	0.1			
kana i S	2.2	1.4	1.2	1.0	0.3	0.1			
3.5	1.0	1.4	1.3	0.5	0.1	0.0			
2	0.5	1.1	1.0	0.3	0.1	0.0			
o	0.4	1.6	1.1	0.2	0.0	0.0			
	0 1 4 9 23 60 3 Optical Depth								
	b) C	loud R	adlativ	e Forch	ng (Wir	n²)			
+	+8.1	+4.0	+0.+	-0.1	-1.0	-0.5			
13	+0.1	+1.7	-1.1	-3.2	-4.1	-0.9			
9.3 r	+0.1	-0.7	-1.4	-1.2	-0.7	-0.1			
kana '	-0.1	-0.5	-1.0	-1.4	-0.5	-0.1			
ر ء د	-0.1	-0.4	-1.9	-0.9	-0.2	-0.1			
د.د د	-0.1	-0.4	-0.9	-0.5	-0.1	0.0			
-	0.0	-0.6	-1.0	-0.3	-0.1	0.0			
						-			

Fu et al. 200

High cloud radiative forcing = -1 W/m^2

Tb threshold versus CC

Effects of Tb threshold

Tropical Cloudy Moist

Effects of ice cloud amount

Tropical Cloudy Moist

LW & alb vs high clouds

Summary

- 1. Based on observations, eliminating cirrus clouds in the edge of extent anvil clouds will not change the net radiative forcing much (within ~2W/m²).
- 2. 2. Although change Tb threshold for cloudymoist regions leads to different areal coverage and albedo of the clouds, the radiative feedback of the clouds is still small due to corresponding change in longwave radiation.
- 3. For all kinds of cirrus clouds (or cloudy-moist regions) we tested, the feedback factors of high-level clouds are only ~1/10 of LCH.

Acknowledgement

- Bruce Wielicki, Y. Hu, K.M. Xu, David Young, Tak Wong, and David Kratz gave many suggestions and comments on this study.
- Ed Kizer helped to set up ERBE-like codes.
- Erika Geier, Seiji Kato, Norman Loeb, and Alice Fan provided the support in SSF data processing.