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SolarSolar--radiation computation: fundamental in climate modelingradiation computation: fundamental in climate modeling

Radiative transfer Radiative transfer eqeq. for a plane. for a plane--parallel parallel homoghomog. . atmosatmos..

GaussGauss--exp. for intensity & Legendreexp. for intensity & Legendre--exp. for phase exp. for phase funcfunc..

GCMGCM--coupled models: computational constraintscoupled models: computational constraints

Resort to simplest twoResort to simplest two--stream approximationsstream approximations
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CCC GCM III: SW layer reflectance and transmittanceCCC GCM III: SW layer reflectance and transmittance

clearclear--sky: 2sky: 2--stream (TS), wholestream (TS), whole--sky: sky: δδ--Eddington (DE)Eddington (DE)

δδ--fourfour--stream (DFS): matrix formulation by stream (DFS): matrix formulation by LiouLiou et al.et al. (1988)(1988)

compromise between accuracompromise between accuracy & efficiencycy & efficiency

IntroductionIntroduction

1

2

I1

I2

I–1
I–2

TOA

Surface

F☼exp(–τ/μ0)

τ
Cos–1(μ0)

Liou, K. N., Q. Fu, and T. P. Ackerman, 1988: A simple formulation of the delta-four-stream approximation 
for radiative transfer parameterizations. J. Atmos. Sci., 45, 1940–1947.

F☼
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Code input: Layer cloud fraction, optical depth, singleCode input: Layer cloud fraction, optical depth, single--scattering albedo scattering albedo 
(SSA), asymmetry factor; underlying albedo, cosine of solar zeni(SSA), asymmetry factor; underlying albedo, cosine of solar zenith th 
angle (CSZA)angle (CSZA)

Code output:Code output:

IntroductionIntroduction

DEDE--equivalent: Layer reflectance & transmittance, with & withoutequivalent: Layer reflectance & transmittance, with & without

reflection from underlying surfareflection from underlying surfacece

Follow from original DFS formulatioFollow from original DFS formulation by solving BVPn by solving BVP

TSTS--equivalent: Layer reflectance & transmittance, withequivalent: Layer reflectance & transmittance, with

multiple/single reflection from multiple/single reflection from underlying surfaceunderlying surface

Some manipulation to derive layer rSome manipulation to derive layer reflectance witheflectance with

single reflectionsingle reflection
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GCM run for 2 years (six months for spinGCM run for 2 years (six months for spin--up)up)

Parallel calls to shortwave radiation routine, with original & DParallel calls to shortwave radiation routine, with original & DFSFS--

modified codes, at every modelmodified codes, at every model--hourhour

Include optical properties of aerosols simulated by CAMInclude optical properties of aerosols simulated by CAM

Examine changes in modeled SW flux at TOA and surfaceExamine changes in modeled SW flux at TOA and surface

IntroductionIntroduction
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Mean percentage diff. in surface wholeMean percentage diff. in surface whole--sky SW fluxsky SW flux

Solar Flux SimulationsSolar Flux Simulations

JanJan JulyJuly
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WholeWhole--sky computations: weighted by cloud fraction (CF)sky computations: weighted by cloud fraction (CF)

Layer Ref = (1 Layer Ref = (1 –– CF)CF)××TSTS--Ref + CFRef + CF××DEDE--RefRef

Layer Trans = (1 Layer Trans = (1 –– CF)CF)××TSTS--Trans + CFTrans + CF××DEDE--TransTrans

Computational TimeComputational Time

RADNEW9
Main radiation Main radiation 

subroutinesubroutine SHORTW8
SW radiation SW radiation 
subroutinesubroutine SWLINK4

SW column               SW column               
ref & trans  ref & trans  

PHYSICdd
Physics subroutinePhysics subroutine

TSTREAM
ClearClear--sky layer         sky layer         

ref & trans  ref & trans  

DELTAE
WholeWhole--sky layer         sky layer         

ref & trans  ref & trans  
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RunningRunning--time ratio of modified to original SHORTW8: 2 time ratio of modified to original SHORTW8: 2 –– 33

Arrays Arrays equivalencedequivalenced in original scheme, so that TS computation is in original scheme, so that TS computation is 

performed onceperformed once

Attempts to equivalence arrays for DFS code resulted in numericaAttempts to equivalence arrays for DFS code resulted in numerical l 

errors, so clearerrors, so clear--sky DFS has to be called again in wholesky DFS has to be called again in whole--skysky

Potential to reduce running time of DFSPotential to reduce running time of DFS--modified SW schememodified SW scheme

Computational TimeComputational Time
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DFS code developed for SW radiation computations in CCC AGCMDFS code developed for SW radiation computations in CCC AGCM

Significant changes in GCM computation of solar fluxes:Significant changes in GCM computation of solar fluxes:

WholeWhole--sky differences: within 5 Wmsky differences: within 5 Wm––22 TOA & 10 WmTOA & 10 Wm––22 surfacesurface

can be as large as +20 and can be as large as +20 and ––40  Wm40  Wm––22

ClearClear--sky differences: within 2 Wmsky differences: within 2 Wm––22

can be as large as +25 and can be as large as +25 and ––12  Wm12  Wm––22

PercentagePercentage differencesdifferences: 4: 4––6% TOA & >20% surface6% TOA & >20% surface

Most prominent at Tropics & high latitudesMost prominent at Tropics & high latitudes

Mostly determined by cloud optical depth & solar zenith angle, aMostly determined by cloud optical depth & solar zenith angle, and by nd by 

aerosol optical depth in a clear skyaerosol optical depth in a clear sky

Conclusions and RecommendationsConclusions and Recommendations
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Chou (1992):Chou (1992): accuracy of DFS computations in GCM within 7.5 accuracy of DFS computations in GCM within 7.5 WmWm––22

Reduction of computational time?Reduction of computational time?

Further research:Further research:

Improvement of the overall accuracy of GCM flux simulationsImprovement of the overall accuracy of GCM flux simulations

(Closure experiments against observational data)(Closure experiments against observational data)

Implications to GCM simulation of climate dynamicsImplications to GCM simulation of climate dynamics

Chou, M.-D., 1992: A solar radiation model for use in climate studies. J. Atmos. Sci., 49, 762–772.

Conclusions and RecommendationsConclusions and Recommendations
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